

LHCb
GAUDI
LHCb Data Processing Applications Framework

User Guide

Version: 5
Issue: 1
Edition: 0
Status:
ID: [Document ID]
Date: 26 July 2000

European Laboratory for Particle Physics
Laboratoire Européen pour la Physique des Particules
CH-1211 Genève 23 - Suisse

GAUDI User Guide
 26 July 2000 Version/Issue: 5/1
Document Control Sheet

Document Status Sheet

Table 1 Document Control Sheet

Document Title: GAUDI User Guide

Version: 5

Issue: 1

Edition: 0

ID: [Document ID]

Status:

Date: 26 July 2000

Keywords:

Tools DTP System: Adobe FrameMaker Version: 5.5

Layout
Template:

Software Documentation
Layout Templates

Version: V1 - 15 January 1999

Authorship Coordinator: M.Cattaneo (from October 1999)
P. Maley (until September 1999)

Table 2 Document Status Sheet

Title: GAUDI User Guide

ID: [Document ID]

Version Issue Date Reason for change

1 0 7/Feb/99 First official (non-draft) version

1 1 10/Feb/99 Minor corrections to installation chapter

2 0 18/Jun/99 Release of version 2 of the GAUDI framework

3 0 24/Nov/99 Release of version 3 of the GAUDI framework

4 1 14/Apr/00 Release of version 4 of the GAUDI framework

5 0 24/Jul/00 Release of version 5 of the GAUDI framework

5 1 26/Jul/00 Corrections to chapters 4 and 5
page 2

GAUDI User Guide
 Table of Contents Version/Issue: 5/1
Table of Contents

Document Control Sheet . 2
Document Status Sheet . . 2

Chapter 1
Introduction . 7

1.1 Purpose of the document . . 7
1.2 Conventions . 8
1.3 Reporting problems . 10
1.4 Editor’s note . 10

Chapter 2
The framework architecture. . 11

2.1 Overview . 11
2.2 Why architecture? . 11
2.3 Data versus code . 12
2.4 Main components . 13
2.5 Package structure . 16

Chapter 3
Release notes and software installation 19

3.1 Release History . 19
3.2 Current Functionality . 19
3.3 Availability . 21
3.4 Using the framework on NT with Developer Studio 21
3.5 Using the framework in Unix 22
3.6 Working with development releases 23

Chapter 4
Getting started . 25

4.1 Overview . 25
4.2 Creating a job . 25
4.3 The main program . 26
4.4 Configuring the job . 27
4.5 Algorithms . 30
4.6 Job execution . 32
4.8 Other examples distributed with Gaudi 36

Chapter 5
Writing algorithms . 37

5.1 Overview . 37
5.2 Algorithm base class . 37
 page 3

GAUDI User Guide
 Table of Contents Version/Issue: 5/1
5.3 Derived algorithm classes . 39
5.4 Nesting algorithms . 43
5.5 Algorithm paths and filters . 44
5.6 Algorithms vs. Services vs. Tools 45

Chapter 6
Accessing data . 47

6.1 Overview . 47
6.2 Using the data stores . 47
6.3 Using data objects . 49
6.4 Object containers . 50
6.5 Using object containers . 52
6.6 Data access checklist . 53
6.7 Defining new data types . 54
6.8 The SmartDataPtr/SmartDataLocator utilities 55
6.9 Smart references and Smart reference vectors 56
6.10 Saving data to a persistent store 57

Chapter 7
LHCb Event Data Model . 59

7.1 Top level event data structures 59
7.2 Monte Carlo event . 60
7.3 Raw event . 60
7.4 Reconstructed event . 61
7.5 Analysis event . 61
7.6 Utilities . 61

Chapter 8
Detector Description . 63

8.1 Overview . 63
8.2 Detector Description Database 63
8.3 Using the Detector Data transient store 65
8.4 General features of the geometry tree 67
8.5 Persistent representation . 69

Chapter 9
Histogram facilities . 89

9.1 Overview . 89
9.2 The Histogram service. . 90
9.3 Using histograms and the histogram service 91
9.4 Persistent storage of histograms. 92

Chapter 10
N-tuple facilities . 93

10.1 Overview . 93
page 4

GAUDI User Guide
 Table of Contents Version/Issue: 5/1
10.2 Access to the N-tuple Service from an Algorithm. 93
10.3 Using the n-tuple service. . 94

Chapter 11
Framework services . 97

11.1 Overview . 97
11.2 Requesting and accessing services 97
11.3 The Job Options Service . 99
11.4 The Standard Message Service 105
11.5 The Particle Properties Service 108
11.6 The Chrono & Stat service . 111
11.7 The Random Numbers Service 114
11.8 Developing new services . . 117

Chapter 12
Tools and ToolSvc . . 121

12.1 Overview . 121
12.2 Tools . . 121
12.3 The ToolSvc . 126

Chapter 13
Converters . 129

13.1 Overview . 129
13.2 Persistency converters . 129
13.3 Collaborators in the conversion process 131
13.4 The conversion process . 132
13.5 Converter implementation - general considerations 134
13.6 Storing Data using the ROOT I/O Engine 135
13.7 The Conversion from Transient Objects to ROOT Objects 136
13.8 Storing Data using other I/O Engines 138

Chapter 14
Accessing SICB facilities . 141

14.1 Overview . 141
14.2 Reading tapes . . 141
14.3 Populating the GAUDI transient data store: SICB Converters 143
14.4 Access to the Magnetic Field 144
14.5 Accessing the SICB detector geometry from Gaudi 145
14.6 Using fortran code in Gaudi 146
14.7 Handling pile up in Gaudi. 147

Chapter 15
Analysis utilities. . 151

15.1 Overview . 151
15.2 LHC++ . 151
 page 5

GAUDI User Guide
 Table of Contents Version/Issue: 5/1
15.3 CLHEP . 151
15.4 NAG C . 152

Chapter 16
Visualization Facilities . 153

16.1 Overview . 153
16.2 Using the GaudiLab services 154

Chapter 17
Design considerations . 157

17.1 Generalities . 157
17.2 Designing within the Framework 157
17.3 Analysis Phase . 159
17.4 Design Phase . . 159

Appendix A
References . . 163

Appendix B
Options for standard components 165

Appendix C
Job Options Grammar and Error Codes. 171

C.1 The EBNF grammar of the Job Options files 171
C.2 Job Options Error Codes and Error Messages 173

Appendix D
LHCb Event Data Model . 177
page 6

GAUDI User Guide
Chapter 1 Introduction Version/Issue: 5/1
Chapter 1

Introduction

1.1 Purpose of the document

This document is intended as a combination of user guide and tutorial for the use of the
Gaudi application framework software. It is complemented principally by two other
“documents”: the Architecture Design Document (ADD) [1], and the online auto-generated
reference documentation [2]. A third document [3] lists the User Requirements and Scenarios
that were used as input and validation of the architecture design. All these documents and
other information about Gaudi, including an online version of this user guide, are available
from the Gaudi home page: http://lhcb.cern.ch/computing/Components/html/GaudiMain.html

The ADD contains a discussion of the architecture of the framework, the major design choices
taken in arriving at this architecture and some of the reasons for these choices. It should be of
interest to anyone who wishes to write anything other than private analysis code.

As discussed in the ADD the application framework should be usable for implementing the
full range of offline computing tasks: the generation of events, simulation of the detector,
event reconstruction, testbeam data analysis, detector alignment, visualisation, etc. etc..

In this document we present the main components of the framework which are available in
the current release of the software. It is intended to increment the functionality of the software
at each release, so this document will also develop as the framework increases in functionality.
Having said that, physicist users and developers actually see only a small fraction of the
framework code in the form of a number of key interfaces. These interfaces should change
very little if at all and the user of the framework cares very little about what goes on in the
background.

The document is arranged as follows: Chapter 2 is a short resume of the framework
architecture, presented from an “Algorithm-centric” point of view, and re-iterating only a part
of what is presented in the ADD.

Chapter 3 contains a summary of the functionality which is present in the current release, and
details of how to obtain and install the software.
 page 7

http://lhcb.cern.ch/computing/Components/html/GaudiMain.html

GAUDI User Guide
Chapter 1 Introduction Version/Issue: 5/1
Chapter 4 discusses in some detail an example which comes with the framework library. It
covers the main program, some of the basic aspects of implementing algorithms, the
specification of job options and takes a look at how the code is actually executed. The subject
of coding algorithms is treated in more depth in chapter 5.

Chapter 6 discusses the use of the framework data stores. Chapters 7, 8, 9, 10 discuss the
different types of data accessible via these stores: event data, detector description data
(material and geometry), histogram data and n-tuples.

Chapter 11 deals with services available in the framework: job options, messages, particle
properties, random numbers and also has a section on developing new services. Framework
tools are discussed in Chapter 12.

A rather more technical subject, that of the use and implementation of converter classes is
discussed in Chapter 13.

The use of certain SicB facilities from within Gaudi, and the use of FORTRAN code is
discussed in Chapter 14. Chapter 15 gives pointers to the documentation for class libraries
which we are recommending to be used within Gaudi.

Chapter 16 describes a prototype implementation of visualisation facilities inside Gaudi.
Finally, Chapter 17 is a small guide to designing classes that are to be used in conjunction with
the application framework.

Appendix A contains a list of references. Appendix B lists the options which may be specified
for the standard components available in the current release. Appendix C gives the details of
the syntax and possible error messages of the job options compiler.

1.2 Conventions

1.2.1 Units

We have decided to adopt the same system of units as CLHEP, as used also by GEANT4. This
system is fully documented in the CLHEP web pages, at the URL:
http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Units/units.html.

Here we reproduce the list of basic units:

• millimetre for length

• nanosecond for time

• MeV for energy

• positron charge for electric charge

• Kelvin for temperature

• mole for amount of substance

• radian for plane angles
page 8

http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Units/units.html

GAUDI User Guide
Chapter 1 Introduction Version/Issue: 5/1
• steradian for solid angles

Note that this differs from the convention used in SICB, where the basic units of length, time
and energy are, respectively, centimetre, GeV, second.

1.2.2 Coding Conventions

The Gaudi software follows (or should follow!) the LHCb C++ coding conventions described
in reference [4]. One consequence is that the specification of the C++ classes is done in two
parts: the header or “.h” file and the implementation or “.cpp” file.

1.2.3 Naming Conventions

Histograms In order to avoid clashes in histogram identifiers, we suggest that histograms are
placed in named subdirectories of the transient histogram store. The top level subdirectory
should be the name of a sub-detector group (e.g. /stat/VELO). Below this, users are free to
define their own structure. One possibility is to group all histograms produced by a given
algorithm into a directory named after the algorithm.

1.2.4 Conventions of this document

Angle brackets are used in two contexts. To avoid confusion we outline the difference with an
example.

The definition of a templated class uses angle brackets. These are required by C++ syntax, so
in the instantiation of a templated class the angle brackets are retained:

This is to be contrasted with the use of angle brackets to denote “replacement” such as in the
specification of the string:

which implies that the string should look like:

Hopefully what is intended will be clear from the context.

AlgFactory<UserDefinedAlgorithm> s_factory;

“<concreteAlgorithmType>/<algorithmName>”

“EmptyAlgorithm/Empty”
 page 9

GAUDI User Guide
Chapter 1 Introduction Version/Issue: 5/1
1.3 Reporting problems

Users of the Gaudi software are encouraged to report problems and requests for new features
via the LHCb problem reporting system. This system is integrated in the CERN Problem
Report Management System (CPRMS) provided by IT division, based on the Action Request
System software from Remedy Corporation.

To report a new problem, go to the LHCb CPRMS home page
http://hep-service-prms.web.cern.ch/hep-service-prms/lhcb.html, click on the Submit button, and
fill in the form. This will add the report to the system and notify the developers by E-mail. You
will receive E-mail notification of any changes in the status of your report.

To view the list of current problems, and their status, click the Query button on the LHCb
CPRMS home page.

Active developers of the Gaudi software are encouraged to use the gaudi-developers mailing
list for discussion of Gaudi features and future developments. This list is not, primarily,
intended for bug reports. In order to send mail to gaudi-developers@listbox.cern.ch, you must
fist subscribe to the list, using the form at
http://wwwlistbox.cern.ch/mowgli/full_list?server=listbox&group=&list=gaudi-developers.

The archive of the mailing list is publically accessible on the Web, at
http://home.cern.ch/~majordom/news/gaudi-developers/index.html.

1.4 Editor’s note

This document is a snapshot of the Gaudi software at the time of the release of version 5. We
have made every effort to ensure that the information it contains is correct, but in the event of
any discrepancies between this document and information published on the Web, the latter
should be regarded as correct, since it is maintained between releases and, in the case of code
documentation, it is automatically generated from the code.

We encourage our readers to provide feedback about the structure, contents and correctness
of this document and of other Gaudi documentation. Please send your comments to the
editor, Marco.Cattaneo@cern.ch
page 10

mailto:Marco.Cattaneo@cern.ch
http://hep-service-prms.web.cern.ch/hep-service-prms/lhcb.html
http://home.cern.ch/~majordom/news/gaudi-developers/index.html
http://wwwlistbox.cern.ch/mowgli/full_list?server=listbox&group=&list=gaudi-developers
mailto:gaudi-developers@listbox.cern.ch

GAUDI User Guide
Chapter 2 The framework architecture Version/Issue: 5/1
Chapter 2

The framework architecture

2.1 Overview

In this chapter we would like to briefly re-visit some of those issues addressed in the
Architecture Design Document which are of particular interest to physicists wishing to use
the framework. We also try to define a few of the words that are thrown around in the rest of
the document, and end with some practical guidelines on software packaging.

A (more) complete view of the architecture, along with a discussion of the main design
choices and the reasons for these choices may be found in reference [1].

2.2 Why architecture?

The basic “requirement” of the physicists in the collaboration is a set of programs for doing
event simulation, reconstruction, visualisation, etc. and a set of tools which facilitate the
writing of analysis programs. Additionally a physicist wants something that is easy to use
and (though he or she may claim otherwise) is extremely flexible. The purpose of the Gaudi
application framework is to provide software which fulfils these requirements, but which
additionally addresses a larger set of requirements, including the use of some of the software
online.

If the software is to be easy to use it must require a limited amount of learning on the part of
the user. In particular, once learned there should be no need to re-learn just because
technology has moved on. (You do not need to re-take your licence every time you buy a new
car.) Thus one of the principal design goals was to insulate users (physicist developers and
physicist analysists) from irrelevant details such as what software libraries we use for data
I/O, or for graphics. We have done this by developing an architecture. An architecture
consists of the specification of a number of components and their interactions with each other.
A component is a “block” of software which has a well specified interface and functionality.
 page 11

GAUDI User Guide
Chapter 2 The framework architecture Version/Issue: 5/1
An interface is a collection of methods along with a statement of what each method actually
does, i.e. its functionality.

We may summarise the main benefits we gain from this approach:

Flexibility This approach gives flexibility because components may be plugged together in
different ways to perform different tasks.

Simplicity Software for using, for example, an object data base is in general fairly complex
and time consuming to learn. Most of the detail is of little interest to someone who just wants
to read data or store results. A “data access” component would have an interface which
provided to the user only the required functionality. Additionally the interface would be the
same independently of the underlying storage technology.

Robustness As stated above a component can hide the underlying technology. As well as
offering simplicity, this has the additional advantage that the underlying technology may be
changed without the user even needing to know.

It is intended that almost all software written by physicists in the collaboration whether for
event generation, reconstruction or analysis will be in the form of specialisations of a few
specific components. Here, specialisation means taking a standard component and adding to
its functionality while keeping the interface the same. Within the application framework this
is done by deriving new classes from one of the base classes:

• DataObject

• Algorithm

• Converter

In the rest of this chapter we will briefly consider the first two of these components and in
particular the subject of the “separation” of data and algorithm. They will be covered in more
depth in chapters 5 and 6. The third base class, Converter, exists more for technical necessity
than anything else and will be discussed in chapter 13. Following this we give a brief outline
of the main components that a physicist developer will come into contact with.

2.3 Data versus code

Broadly speaking, tasks such as physics analysis and event reconstruction consist of the
manipulation of mathematical or physical quantities: points, vectors, matrices, hits, momenta,
etc., by algorithms which are generally specified in terms of equations and natural language.
The mapping of this type of task into a programming language such as FORTRAN is very
natural, since there is a very clear distinction between “data” and “code”. Data consists of
variables such as:

integer n
real p(3)

and code which may consist of a simple statement or a set of statements collected together
into a function or procedure:

real function innerProduct(p1, p2)
page 12

GAUDI User Guide
Chapter 2 The framework architecture Version/Issue: 5/1
real p1(3),p2(3)
innerProduct = p1(1)*p2(1) + p1(2)*p2(2) + p1(3)*p2(3)
end

Thus the physical and mathematical quantities map to data and the algorithms map to a
collection of functions.

A priori, we see no reason why moving to a language which supports the idea of objects, such
as C++, should change the way we think of doing physics analysis. Thus the idea of having
essentially mathematical objects such as vectors, points etc. and these being distinct from the
more complex beasts which manipulate them, e.g. fitting algorithms etc. is still valid. This is
the reason why the Gaudi application framework makes a clear distinction between “data”
objects and “algorithm” objects.

Anything which has as its origin a concept such as hit, point, vector, trajectory, i.e. a clear
“quantity-like” entity should be implemented by deriving a class from the DataObject base
class.

On the other hand anything which is essentially a “procedure”, i.e. a set of rules for
performing transformations on more data-like objects, or for creating new data-like objects
should be designed as a class derived from the Algorithm base class.

Further more you should not have objects derived from DataObject performing long
complex algorithmic procedures. The intention is that these objects are “small”.

Tracks which fit themselves are of course possible: you could have a constructor which took a
list of hits as a parameter; but they are silly. Every track object would now have to contain all
of the parameters used to perform the track fit, making it far from a simple object.
Track-fitting is an algorithmic procedure; a track is probably best represented by a point and a
vector, or perhaps a set of points and vectors. They are different.

2.4 Main components

The principle functionality of an algorithm is to take input data, manipulate it and produce
new output data. Figure 1 shows how a concrete algorithm object interacts with the rest of the
application framework to achieve this.

The figure shows the four main services that algorithm objects use:

• The event data store

• The detector data store

• The histogram service

• The message service

The particle property service is an example of additional services that can be requested by an
algorithm, by asking the Application Manager to locate them via the ISvcLocator interface.
The job options service (see Chapter 11) is used by the Algorithm base class, but is not
usually explicitly seen by a concrete algorithm.
 page 13

GAUDI User Guide
Chapter 2 The framework architecture Version/Issue: 5/1
Each of these services is provided by a component and the use of these components is via an
interface. The interface used by algorithm objects is shown in the figure, e.g. for both the event
data and detector data stores it is the IDataProviderSvc interface. In general a component
implements more than one interface. For example the event data store implements another
interface: IDataManager which is used by the application manager to clear the store before a
new event is read in.

An algorithm’s access to data, whether the data is coming from or going to a persistent store
or whether it is coming from or going to another algorithm is always via one of the data store
components. The IDataProviderSvc interface allows algorithms to access data in the store
and to add new data to the store. It is discussed further in chapter 6 where we consider the
data store components in more detail.

The histogram service is another type of data store intended for the storage of histograms and
other “statistical” objects, i.e. data objects with a lifetime of longer than a single event. Access
is via the IHistogramSvc which is an extension to the IDataProviderSvc interface, and is
discussed in chapter 9. The n-tuple service is similar, with access via the INtupleSvc
extension to the IDataProviderSvc interface, as discussed in Chapter 10.

In general an algorithm will be configurable: It will require certain parameters, such as
cut-offs, upper limits on the number of iterations, convergence criteria, etc., to be initialised
before the algorithm may be executed. These parameters may be specified at run time via the
job options mechanism. This is done by the job options service. Though it is not explicitly
shown in the figure this component makes use of the IProperty interface which is
implemented by the Algorithm base class.

Figure 1 The main components of the framework as seen by an algorithm object.

&RQFUHWH$ OJRULWKP

(YHQW'DWD6HUYLFH
,'DWD3URYLGHU6YF

,'DWD3URYLGHU6YF

,+ LVWRJUDP6YF

,0HVVDJH6YF

,$ OJRULWKP ,3URSHUW\

2EMHFW$ 2EMHFW%

'HWHFWRU'DWD6HUYLFH

+ LVWRJUDP6HUYLFH

0HVVDJH6HUYLFH

3DUWLFOH3URSHUW\6YF
,3DUWLFOH3URSHUW\6YF

$SSOLFDWLRQ0DQDJHU

,6YF/RFDWRU
page 14

GAUDI User Guide
Chapter 2 The framework architecture Version/Issue: 5/1
During its execution an algorithm may wish to make reports on its progress or on errors that
occur. All communication with the outside world should go through the message service
component via the IMessageSvc interface. Use of this interface is discussed in Chapter 11.

As mentioned above, by virtue of its derivation from the Algorithm base class, any concrete
algorithm class implements the IAlgorithm and IProperty interfaces. IProperty is
usually used only by the job options service.

Top level algorithms, i.e. algorithm objects created by the application manager are controlled
via the IAlgorithm interface. This consists essentially of the methods: initialize(),
execute(), and finalize().

The figure also shows that a concrete algorithm may make use of additional objects internally
to aid it in its function. These private objects do not need to inherit from any particular base
class so long as they are only used internally. These objects are under the complete control of
the algorithm object itself and so care is required to avoid memory leaks etc.

We have used the terms “interface” and “implements” quite freely above. Let us be more
explicit about what we mean. We use the term interface to describe a pure virtual C++ class,
i.e. a class with no data members, and no implementation of the methods that it declares. For
example:

is a pure abstract class or interface. We say that a class implements such an interface if it is
derived from it, for example:

A component which implements more than one interface does so via multiple inheritance,
however, since the interfaces are pure abstract classes the usual problems associated with
multiple inheritance do not occur.

Within the framework every component, i.e. services and algorithms, has two qualities:

• A concrete component class, e.g. TrackFinderAlgorithm or MessageSvc.

• Its name, e.g. “KalmanFitAlgorithm” or “stdMessageService”.

In addition, as discussed above, a component may implement several interfaces. These
interfaces are identified by a unique number which is available via a global constant of the
form: IID_InterfaceType, such as for example IID_IDataProviderSvc. Using these it
is possible to enquire what interfaces a particular component implements.

class PureAbstractClass {
virtual method1() = 0;
virtual method2() = 0;

}

class ConcreteComponent: public PureAbstractClass {
method1() { }
method2() { }

}

 page 15

GAUDI User Guide
Chapter 2 The framework architecture Version/Issue: 5/1
2.5 Package structure

For large software systems, such as ours, it is clearly important to decompose the system into
hierarchies of smaller and more manageable entities. This decomposition can have important
consequences for implementation related issues, such as compile-time, link dependencies,
configuration management, etc. For that we need to introduce the concept of package as the
grouping of related components together into a cohesive physical entity. A package is also the
minimal unit of software release.

We have decomposed the LHCb data processing software into the packages shown in
Figure 2. At the lower level we find Gaudi which is the framework itself and only depends on
some basic standard packages (STL,...). In the second level there are the packages for the
specific LHCb event and detector data models. These packages depend on the framework
and CLHEP. In the same level we have a specific implementation of the Histogram
persistency service based on HBOOK (HbookCnv). When other implementations will exist,
they will be added as packages. At the next level we will have packages consisting of
implementations of event and detector data persistency services and converters. Currently in
this release we have one based on SicB and ZEBRA (SicbCnv) and a generic one (DbCnv)
which currently understands ROOT I/O and is being tested with ODBC compliant databases
and with Objectivity/DB. The algorithms that will constitute the core of the data processing
applications (trigger, reconstruction, analysis, etc.) will form a number a independent
packages; some commony used algorithms are available in GaudiAlg. Finally, at the top level
we find the applications.

Figure 2 Current package structure of the LHCb software
page 16

GAUDI User Guide
Chapter 2 The framework architecture Version/Issue: 5/1

F

2.5.1 Package Layout

Figure 3 shows the recommended layout for Gaudi packages (and for other LHCb software
packages, such as sub-detector software).

2.5.2 Packaging Guidelines for sub-detectors

Packaging is an important architectural issue for the Gaudi framework, but also for the
sub-detector software packages based on Gaudi. Typically, sub-detector packages consist of:

• Specific event model

• Specific detector description

• Sets of algorithms (digitisation, reconstruction, etc.)

The packaging should be such as to minimise the dependencies between packages, and must
absolutely avoid cyclic dependencies. The granularity should not be too small or too big. Care
should be taken to identify the external interfaces of packages: if the same interfaces are
shared by many packages, they should be promoted to a more basic package that the others
would then depend on. Finally, it is a good idea to discuss your packaging with the librarian
and/or architect.

igure 3 Recommended layout of LHCb software packages

�����

�� ���� �	

�� ���
�� ����	 �������	 �����
�����		�����

������� !

"#�����
��
$#�

$�����#�
��%#����&�����
#
'��#�&��
&�����#
��
#(&��������	

�����
�

#�%#����&�����
#&'��#�
#include “packA/xxx.h”

��������	
������
�

. . .
 page 17

GAUDI User Guide
Chapter 2 The framework architecture Version/Issue: 5/1
Note that sub-detectors are expected to organise their own project releases, for internal group
consumption and integration tests, using the $LHCBDEV development area (described in
Section 3.6.1). Once the code is ready for public, collaboration wide use, it should be released
(by the librarian) in the public release area ($LHCBSOFT).
page 18

GAUDI User Guide
Chapter 3 Release notes and software installation Version/Issue: 5/1
Chapter 3

Release notes and software installation

3.1 Release History

3.2 Current Functionality

We use an incremental and iterative approach for producing the Gaudi software. We started in the first
release with very basic functionality and we plan to expand its capabilities release by release. The basic
functionality offered in the first release allowed you to read the already generated SicB Monte Carlo
data sets (Zebra files). The data in these files is used to build C++ objects which can be used as input for
the new software.

Version Date Package List

v5 24/07/2000 Gaudi[v7], GaudiSvc[v3], GaudiAlg[v1], LHCbEvent[v7r1], SicbCnv[v8],
DbCnv[v2], HbookCnv[v6r1], DestDesc[v4], GaudiExamples[v8]

v4 14/04/2000 Gaudi[v6], GaudiSvc[v2], LHCbEvent[v7], SicbCnv[v7], DbCnv[v1],
HbookCnv[v6], DestDesc[v3], GaudiExamples[v7]

v3 19/11/1999 Gaudi[v5], LHCbEvent[v6], SicbCnv[v6], RootCnv[v3], HbookCnv[v5],
DestDesc[v2], GaudiLab[v1], GaudiExamples[v6]

v2 18/6/1999 Gaudi[v4], LHCbEvent[v5], SicbCnv[v5], RootCnv[v2], HbookCnv[v4],
DestDesc[v1], GaudiExamples[v5]

v1 5/2/1999 Gaudi[v1], LHCbEvent[v1], SicbCnv[v1], HbookCnv[v1], GaudiExam-
ples[v1]
 page 19

GAUDI User Guide
Chapter 3 Release notes and software installation Version/Issue: 5/1
Release v3 incorporated most of the essential features which are needed for developing data processing
applications (reconstruction, analysis, etc.). This functionality was enhanced in Release v4 and has been
further enhanced in the current release. The functionality list that follows is organized by categories.

Interfaces A set of interfaces that facilitates the interaction between the different components of the
framework. Mainly these are interfaces to services.

Basic framework services This set of services offer the minimal functionality needed for
constructing applications. They are described in detail in Chapter 11.
The message service is used to send and format messages generated in the code, with an associated
severity that is used for filtering and dispatching them.
The job options service allows the configuration of the application by end users assigning values to
properties defined within the code; properties can be basic types (float, bool, int, string),
or extended with bounds checking, hierarchical lists, and immediate callback from string "commands".
The Random Numbers service makes available several random number distributions via a standard
interface, and ensures that applications use a unique random number engine in a reproducible fashion.
The Chrono service offers the functionality for measuring elapsed time and job execution statistics.
The Tools service, which provides management of Tools, is discussed in Chapter 12. Tools are
lightweight objects which can be requested and used many times by other components to perform well
defined tasks.
Data services provide the access to the transient data objects (event, detector and statistical data). The
data services are described in chapters 6 to 10.

Event data model The event model has been extended to Velo, L0, L1 and updated for Calo. The
current status is presented in Chapter 7.

Event data persistent storage The current version supports event data files (or tapes) as input
produced by SicB in Zebra format (RZ). The Zebra banks are converted to C++ objects by specialized
fragments of code (SicB converters). This conversion is available in the framework for a number of
SicB banks. Adding more converters is possible and will be done on request. The event data produced
by the application can be stored in ROOT files (Root I/O) and retrieved later. This also requires to write
specialized converters. The DBCnv package is included to help the user to make objects persistent.
Refer to Chapter 13 for more details.

Histograms & N-tuples The framework provides facilities for creating histograms (1 and 2
dimensional) and n-tuples (row and column wise) from user algorithms. The histogram interface is the
AIDA1 common interface. Saving histograms and n-tuples is currently implemented using the HBOOK
format. Other persistent representations will be made available if requested. The interface to histograms
and N-tuples from the user code should not be affected if the persistency representation is changed later.
Details of the histogram and n-tuple facilities can be found in Chapter 9 and 10 respectively.

Detector description and geometry The framework provides facilities for describing the logical
structure of the detector in terms of a hierarchy of detector elements and also the basic geometry
description in terms of volumes, solids and materials. Facilities for customizing the generic description
to many specific detector needs are also provided. This should allow to develop detector specific code
which can provide geometry answers to questions from the physics algorithms (simulation,
reconstruction and analysis). The persistent representation of the detector description is based on text
files in XML format. a detailed description can be found in Chapter 8. A transport service is provided to
estimate the amount of material between 2 arbitrary points in the detector setup.

1. Abstract Interfaces for Data Analysis (http://wwwinfo.cern.ch/asd/lhc++/AIDA/index.html)
page 20

http://wwwinfo.cern.ch/asd/lhc++/AIDA/index.html

GAUDI User Guide
Chapter 3 Release notes and software installation Version/Issue: 5/1
Analysis services A number of facilities and services are included in the current release to facilitate
writing physics analysis code. The GaudiAlg package is a collection of general purpose algorithms,
including a sequencer which uses the new filtering capability of algorithms to manage the execution of
algorithm sequences in a filtering application, as discussed in section 5.5. The Particle Properties
service (section 11.5) provides the properties of all the elementary particles. Access to the CLHEP and
NAG C libraries (Chapter 15) provides numerical utilities for writing physics algorithms.

Visualization services The framework provides very basic facilities (at the prototype level) for
visualization of event and detector data. These services are currently based on the packages that
constitutes the Open Scientist suite (OpenGL, OpenInventor(soFree), Lab,...) The idea is that any data
object in the event or detector store can be represented graphically by providing a specific graphical
converter. A prototype implementation of an interactive graphical user interface service is included in
the release.

SicB services A number of services are included in the current release to facilitate the access to SicB
data (detector description, magnetic field, etc.) and to facilitate re-using existing Fortran code with the
framework. These services can be extended to accommodate new concrete requests when integrating
big parts of the current legacy code (SicB). In the latest release there full support for event pile-up. It is
possible to read events from two input data streams and merge them before any processing is done.
Refer to Chapter 14 for more details.

Dynamic loading of libraries The framework will be used to implement different data processing
applications for different environments. It is important that the services and their concrete
implementations are extendable and configurable dynamically at run time and not statically. The latter
would imply linking with all the available libraries producing huge executables. And in certain
applications and environments some of the libraries will surely never be used. This release provides
support for dynamic libraries for the NT and Linux platforms.

3.3 Availability

The application framework is supported on the following platforms:

• Windows NT using the developer studio C++ environment

• RedHat Linux 6.1 (certified CERN Linux distribution with SUE and AFS).

Support for IBM AIX was dropped as of release 3. Support for HP-UX 10.20 was dropped as of
release 4.

The code, documentation and installation instructions are available from the LHCb web site
at: http://lhcb.cern.ch/computing/Components/html/GaudiMain.html

3.4 Using the framework on NT with Developer Studio

The Framework sources are available via AFS or can be downloaded from the web. The libraries for
NT are available in the LHCb AFS tree, in the Win32Debug subdirectory of each package.
 page 21

http://lhcb.cern.ch/computing/Components/html/GaudiMain.html

GAUDI User Guide
Chapter 3 Release notes and software installation Version/Issue: 5/1
Instructions for installing the LHCb software environment on NT and for customising MS Visual
Studio can be found at: http://lhcb.cern.ch/computing/Support/html/DevStudio/default.htm

3.5 Using the framework in Unix

The framework libraries have been built for various Unix platforms and are available via AFS.
These libraries have been built using the Configuration Management Tool (CMT). Therefore,
using the CMT tool is the recommended way to modify existing packages or re-build the
examples included in the release. Complete and up to date information about using CMT is
available at the URL: http://lhcb.cern.ch/computing/Support/html/cmt.htm. Here we give only
simple instructions on how to get started with the Gaudi software under CMT on Unix.

Getting a copy of a package: Suppose you want to build the latest released version of the
GaudiExamples package:

Building and running an example: Now that you have the code, suppose you want to modify
the Histograms example, then build it and run it:

[1] cd mycmt
[2] getpack GaudiExamples
 following versions are available - v6 v5r1 v5 v4 v3
 Enter version number [<CR>=v6]->

[3] cd GaudiExamples/v6/Histograms
[4] emacs HistoAlgorithm.cpp
----- Make your modification, then
[5] cd ../mgr
[6] emacs requirements
----- Uncomment Histograms and comment all the others
[7] gmake
[8] cd ../Histograms
[9] emacs jobOptions.txt
----- Make any modification if needed
[10] ../$CMTCONFIG/Histograms.exe
page 22

http://lhcb.cern.ch/computing/Support/html/DevStudio/default.htm
http://lhcb.cern.ch/computing/Support/html/cmt.htm

GAUDI User Guide
Chapter 3 Release notes and software installation Version/Issue: 5/1
Modifying a library and rerunning the example: Suppose now you want to modify one of the
Gaudi libraries, build it, then relink the Histograms example and run it:

3.6 Working with development releases

This User Guide corresponds to release 5 of the GAUDI software. Subsequent to this release,
new features may be added to the CVS repository which will not become generally available
(and documented) until the next release. Should you wish to use some of these new features
before then, you can pick them up from the development release area.

3.6.1 The development release area

Development releases of packages are made periodically into the AFS directory tree below
/afs/cern.ch/lhcb/software/DEV (pointed to by the LHCBDEV environment variable
on Unix), by checking out and building the CVS head revision of modified packages. The
directory structure of LHCBDEV is analogous to LHCBSOFT - there is a subdirectory per
package, below which there are subdirectories for each development release version of that
package. These subdirectories have a name which reflects the date of the build, e.g. h000626
was built on 26th June 2000. The most recent successful build is pointed to by a logical link
whose version number is the current release version number incremented by one. For
example, if the current released version of Gaudi is in $LHCBSOFT/Gaudi/v7, the most
recent successfully built development version is in $LHCBDEV/Gaudi/v8.

3.6.2 Using the development version of packages

The directory structure described above was designed to make it easy to work with the
development version of packages, without needing to make a private copy of the head
revision of a package.

[11] cd $HOME/mycmt
[12] getpack HbookCnv v5
[13] cd HbookCnv/v5/HbookCnv
[14] emacsMake your modification...
[15] cd ../mgr
[16] gmake
[17] cd $HOME/mycmt/GaudiExamples/v6/mgr
[18] cmt show uses
----- Make sure that you are using the modified version (v5) of
----- HbookCnv. If not, edit the requirements file to use this version
[19] gmake
[20] cd ../Histograms
[21] ../$CMTCONFIG/Histograms.exe
 page 23

GAUDI User Guide
Chapter 3 Release notes and software installation Version/Issue: 5/1
On Unix it is sufficient to modify the CMTPATH environment variable to include the
development area:

setenv CMTPATH $HOME/mycmt:$LHCBDEV

Packages will then be searched first in your private CMT area, then on LHCBDEV and finally
on LHCBSOFT. Note that this will always give you the latest working version of all packages.
If you only need a specific development version of one package while keeping the production
version of all other packages, it would be better to leave CMTPATH pointing only to your
private area, and making a logical link to the appropriate development package. For example:

This would allow you to use the development version of Gaudi built on 26th June 2000, while
using the released version of everything else.

On NT, only the first option is available, due to the absence of logical links. You can make a
search list for your CMTPATH by simply adding a second path to the
HKEY_CURRENT_USER/SOFTWARE/CMT/path registry key.

If you only want the development version of a specific package, the only option is currently to
copy the appropriate package development subdirectory into your private CMT area.

cd $HOME/mycmt/Gaudi
ln -fs v7 $LHCBDEV/Gaudi/h000626
page 24

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
Chapter 4

Getting started

4.1 Overview

In this chapter we walk through one of the example applications (Histograms) which are
distributed with the framework. We look briefly at the different files and go over the steps
needed to compile and execute the code. We also outline where various subjects are covered
in more detail in the remainder of the document. Finally we cover briefly the other example
applications which are distributed and say a few words on what each one is intended to
demonstrate.

4.2 Creating a job

Traditionally, a “job” is the running of a program on a specified set of input data to produce a
set of output data, usually in batch.

For the example applications supplied this is essentially a two step process. First the
executable must be produced, and secondly the necessary environment variables must be set
and the required job options specified, as illustrated in Figure 4

The example applications consist of a number of “source code” files which together allow you
to generate an executable program. These are:

• The main program.

• Header and implementation files for each of the concrete algorithm classes.

• A CMT requirements file.

• The set of Gaudi libraries.
 page 25

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
.

In order for the job to run as desired you must provide the correct configuration information
for the executable. This is done via entries in the job options file.

4.3 The main program

An example main program is shown in Listing 1 on page 28. It is constructed as follows:

Include files These are needed for the creation of the application manager and Smart interface
pointers.

Figure 4 Creating a job from the Histogram example application

Main.cpp

HistoAlgorithm.cpp

HistoAlgorithm.h

makefile/project

Gaudi Library

Application executable

gmake/Nmake

Job options

job

Environment

Batch machine

requirements

CMT
page 26

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
Application Manager instantiation Line 18 instantiates an ApplicationMgr object. The
application manager is essentially the job controller. It is responsible for creating and correctly
initialising all of the services and algorithms required, for looping over the input data events
and executing the algorithms specified in the job options file, and for terminating the job
cleanly.

Retrieval of Interface pointers The code on lines 20 and 21 retrieves the pointers to the
IProperty and IAppMgrUI interfaces of the application manager.

Setting the application manager’s properties The only property which needs to be set
explicitly in the main program is the name of the job options file which contains all of the
other configuration information needed to run the job. This is done on line 25.

Program execution All of the code before line 33 is essentially for setting up the job. Once this
is done, a call to ApplicationMgr::run() is all that is needed to start the job proper! The
steps that occur within this method are discussed briefly in section 4.6

4.4 Configuring the job

The application framework makes use of a job options file (or possibly a database in future)
for job configuration. The job options file of the Histograms example application is shown in
Listing 2 on page 29.

The format of an options file is discussed fully in Chapter 11. Options may be set both for
algorithms and services and the list of available options for standard components is given in
Appendix B.

For the moment we look briefly at one of the options. The option TopAlg of the application
manager is a list of algorithms that will be created and controlled directly by the application
manager, the so-called top-level algorithms. The syntax is a list of the form:

The line above instructs the application manager to make two top level algorithms. One of
type Type1 called “Name1” and one of type Type2 called “Name2”. In the case where the
name of the algorithm is the same as the algorithm’s type (i.e. class), only the class name is
necessary. Thus, in the example in Listing 2 line 37, an instance of the class "HistoAlgorithm"
will be created with name "HistoAlgorithm"

ApplicationMgr.TopAlg = { "Type1/Name1",”Type2/Name2” };
 page 27

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
.
Listing 1 The example main program.

1: // Include files
2: #include "Gaudi/Kernel/SmartIF.h"
3: #include "Gaudi/Kernel/Bootstrap.h"
4: #include "Gaudi/Interfaces/IAppMgrUI.h"
5: #include "Gaudi/Interfaces/IProperty.h"
6: #include "Gaudi/JobOptionsSvc/Property.h"
7: //---
8: // Package : Gaudi Examples
9: // Description: Main Program

10: //---
11:
12: //--- Example main program
13: int main(int argc, char* argv[]) {
14:
15: StatusCode status = StatusCode::SUCCESS;
16:
17: // Create an instance of an application manager
18: IInterface* iface = Gaudi::createApplicationMgr();
19:
20: SmartIF<IProperty> propMgr (IID_IProperty, iface);
21: SmartIF<IAppMgrUI> appMgr (IID_IAppMgrUI, iface);
22:
23: // Set properties of algorithms and services
24: if (propMgr == iface) {
25: status = propMgr->setProperty(StringProperty("JobOptionsPath",

"jobOptions.txt"));
26: }
27: else {
28: exit(0);
29: }
30:
31: // Run the application manager and process events
32: if (appMgr) {
33: status = appMgr->run();
34: }
35: else {
36: return 0;
37: }
38:
39: // All done - exit
40: return 0;
41: }
42:
page 28

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
Listing 2 The job options file for the Histograms example application.

1: //##
2: //
3: // Histograms job options file
4: //
5: //==
6:
7: // For Windows/NT
8: #ifdef WIN32
9: #include "../Common/Win32StandardJob.txt"

10: #else
11: // For Unix
12: #include "../Common/UnixStandardJob.txt"
13: #endif
14:
15: //--
16: // Event related parameters
17: //--
18: // Number of events to be processed (default is 10)
19: EventSelector.EvtMax = 100;
20: // Print event number every event
21: EventSelector.PrintFreq = 1;
22:
23: //--
24: // Input file
25: //--
26: #ifdef WIN32
27: // For Windows/NT:
28: ApplicationMgr.EvtSel = "FILE

$AFSROOT\cern.ch\lhcb\data\mc\sicb_bpipi_v233_100ev.dst1";
29: #else
30: // For UNIX:
31: ApplicationMgr.EvtSel = "JOBID 16434";
32: #endif
33:
34: //--
35: // Private Application Configuration options
36: //--
37: ApplicationMgr.TopAlg = { "HistoAlgorithm" };
38: //--
39: // Set output level threshold (2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR,

6=FATAL)
40: //--
41: MessageSvc.OutputLevel = 3;
42: HistoAlgorithm.OutputLevel = 3;
43: //--
44: // Histogram output file
45: //--
46: HistogramPersistencySvc.OutputFile = "histo.hbook";
47: //--
48: // Algorithms Private Options
49: //--
50: // 0 = false = no histograms
51: HistoAlgorithm.HistogramFlag = true;
 page 29

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
4.5 Algorithms

The subject of specialising the Algorithm base class to do something useful will be covered in
detail in chapter 5. Here we will limit ourselves to looking at the class HistoAlgorithm in
the example just to get an idea of the basics. For the full listing of this class, refer to the
software distribution. Here we look only at those parts of the code which do something
interesting and leave the technicalities for later.

4.5.1 The HistoAlgorithm header file

The HistoAlgorithm class definition is shown in Listing 3.

Note the following:

• The class is derived from the Algorithm base class as must be all specialised
algorithm classes. This implies that the Algorithm.h file must be included.

• All derived algorithm classes must provide a constructor with the parameters shown
in line 8. The first parameter is the name of the algorithm and is used amongst other
things to locate any options that may have been specified in the job options file.

• The HistoAlgorithm class has three (private) data members, defined in lines 18 to
21. These are a boolean flag, and two pointers to histogram objects.

• The three methods on lines 11 to 13 must be implemnted, since they are pure virtual
in the base class.

Listing 3 The header file of the class: HistoAlgorithm.

1: #include "Gaudi/Algorithm/Algorithm.h" // Required for inheritance
2: class IHistogram1D; // Forward declaration
3: class IHistogram2D; // Forward declaration
4:
5: class HistoAlgorithm : public Algorithm {
6: public:
7: // Constructor of this form must be provided
8: HistoAlgorithm(const std::string& name, ISvcLocator* pSvcLocator);
9:

10: // Three mandatory member functions of any algorithm
11: StatusCode initialize();
12: StatusCode execute();
13: StatusCode finalize();
14:
15: private:
16: // These data members are used in the execution of this algorithm
17: // They are set in the initialisation phase by the job options service
18: bool m_produceHistogram;
19: // Two histograms (used if m_produceHistogram = 1 (true))
20: IHistogram1D* m_hTrackCount;
21: IHistogram2D* m_hPtvsP;
22: };
page 30

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
4.5.2 The HistoAlgorithm implementation file

The implementation file contains the actual code for the constructor and for the methods:
initialize(), execute() and finalize(). It also contains two lines of code for the
HistoAlgorithm factory, which we will discuss in section 5.3.1

The constructor must call the base class constructor, passing on its two arguments. As usual,
member variables should be initialised. Here we set the m_produceHistogram flag to false
and set the histogram pointers to zero. This is also the place to declare any member variables
that you wish to be set by the job options service. This is done by making a call to the
declareProperty() method.

Initialisation The application manager invokes the sysInitialize() method of the
algorithm base class which, in turn, invokes the initialize() method of the base class, the
setProperties() method, and finally the initialize() method of the concrete
algorithm class. As a consequence all of an algorithm’s properties will have been set before its
initialize() method is invoked, and all of the standard services such as the message
service are available. This is discussed in more detail in chapter 5.

Looking at the code in the example we see that depending on the value of the histogram flag
the HistoAlgorithm class may also create two histograms at initialisation and declare them
to the histogram data service (see Chapter 9 for details on the use of histograms in Gaudi):

execution The execute method is where most of the real action takes place. This method is
called by the application manager once for every event. The HistoAlgorithm class accesses
the event data store to retrieve a container of track objects (line 2). It then fills one of the two
previously created histograms with the number of particles (line 15).

1: HistoAlgorithm::HistoAlgorithm(const std::string& name,
2: ISvcLocator* pSvcLocator) :
3: Algorithm(name, pSvcLocator),
4: m_hTrackCount(0), m_hPtvsP(0) {
5: // Declare the algorithm’s properties
6: declareProperty("HistogramFlag", m_produceHistogram = false); }

Listing 4 Example of creation of histograms

1: if(m_produceHistogram) {
2: log << MSG::INFO << "Histograms will be produced" << endreq;
3:
4: m_hTrackCount = histoSvc()->book(“/stat/simple1D/1”, "TrackCount",

100,0,3000);
5: if(0 == m_hTrackCount) {
6: log << MSG::ERROR << “Cannot register histo TrackCount”<<endreq;
7: }
8: m_PtvsP = histoSvc()->book(“stat/simple2D/3”,"Pt versus P",

100,0,200,100,0,5);
9: if(0 == m_PtvsP) {

10: log << MSG::ERROR << “Cannot register histo Pt versus P”<<endreq;
11: }
12: }
 page 31

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
In order to use the objects within the container an iterator is defined (line 19) and the second
histogram is filled with the momentum of the tracks (line 24).

The details of the event data store and how data is accessed are discussed in Chapter 6.

Finalisation At finalisation, the HistoAlgorithm class asks the histogram service to
printout the histograms in different formats.

MsgStream The HistoAlgorithm class makes use of the message service and the
MsgStream utility class in order to print out some progress information, for example:

The first line creates a local MsgStream object, which uses the Algorithm’s standard message
service via the msgSvc() accessor, and the algorithm’s name via the name() accessor. The use
of these is discussed in more detail in Chapter 11.

4.6 Job execution

From the main program and the requirements file we can make an executable. This executable
together with the file of job options form a job which may be submitted for batch or run
interactively. Figure 5 shows a trace of an example program execution. The diagram is not

1: // MCParticle
2: SmartDataPtr<MCParticleVector> particles(eventSvc(),
3: "/Event/MC/MCParticles");
4:
5: if(!particles) {
6: log << MSG::ERROR << "Unable to retrieve MCParticles" << endreq;
7: return 0;
8: }
9: log << MSG::INFO << "+++++ MCParticles retrieved +++++" << endreq;

10:
11: // Histograms
12: if(m_produceHistogram) {
13:
14: // Fill the track count histogram
15: m_hTrackCount->fill(particles->size(), 1.);
16:
17: // Fill the Pt versus P scatterplot
18: // Iterate over all tracks in the track container
19: MCParticleVector::iterator iterP = 0;
20: for(iterP = particles->begin(); iterP != particles->end(); iterP++) {
21: // Get the energy of the track, convert it to GeV, and histogram it
22: double pt = (*iterP)->fourMomentum().perp();
23: double p = (*iterP)->fourMomentum().rho();
24: m_hPtvsP->fill(p / GeV, pt / GeV, 1.);
25: }
26: }

MsgStream log(msgSvc(), name());
log << MSG::INFO << "finalize" << endreq;
page 32

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
intended to be complete, merely to illustrate a few of the points mentioned earlier in the
chapter.

1. The application manager instantiates the required services and initialises them. The
message service is done first to allow the other services to use it, and the job options
service is second so that the other services may be configured at run time.

2. The algorithms which have been declared to the application manager within the job
options (via the TopAlg option) are created. We denote these algorithms “top-level”
as they are the only ones controlled directly by the application manager. For
illustration purposes we instantiate also an EmptyAlgorithm as well as the
HistoAlgorithm of the example

3. The top-level algorithms are initialised. They may request that their properties (if
they have any) are set and may make use of the message service. If any algorithm
fails to initialise the job is aborted.

4. The application manager now starts to loop over events. After each event is read, it
executes each of the top level algorithms in order. The order of execution of the
algorithms is the order in which they appear in the TopAlg option. This will
continue until the required number of events has been processed. If a particular
algorithm returns a FAILURE status code many times, the application manager may
decide that this algorithm is badly configured and jump to the finalisation stage
before all events have been processed.

5. After the required data sample has been read the application manager finalises each
top level algorithm.

6. Services are finalised.

7. All objects are deleted and resources freed. The program terminates.

4.7 Simple Physics Analysis Example

An example of how to do some very simple physics analysis is provided in the
GaudiExamples package. The algorithms in the example use many of the Gaudi Services that
someone would want to be able to utilize while doing physics analysis: histograms, ntuples,
creating and retrieving private transient data, retrieving particle properties (like mass values),
etc. Detailed examples on how to use the specific services are provided in the topical
examples but in the SimpleAnalysis example they are combined togheter. Tools to make
physics analysis in a more elegant and complex way are under development and their
concrete implementation will be part of the OO Physics Analysis Program.

The SimpleAnalysisAlgorithm is an example in which pi+ pi- invariant masses are made
while requiring the component particles to satisfy some simple kinematic and quality cuts.
Private containers of the particles satisfying successive cuts are created and filled (charged
particles, detection in the silicon, best particle ID). Invariant masses are made and
corresponding histograms are filled for all combinations of the final private containers, for
combinations with Pt of both pions greater than a cut value and for combinations with impact
parameter of both pions greater then a cut value. The Pt and impact parameter cut values are
properties of the algorithm and as such can be specified in the jobOptions, where the number
is taken in Gaudi Units. CLHEP vectors' classes are used to evaluate transverse momentum
 page 33

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
Figure 5 A sequence diagram showing a part of the execution of the example program.

"log"

sysFinalize()

"log"

"log"

"log"

create

create

AppMgr

HistoAlgorithm

EmptyAlgorithm

MessageSvc

JobOptionsSvc

create+initialize()

create+initialize()

sysInitialize()

sysInitialize()

declareProperty()

setProperties()

setMyPropeties()

SetProperty()

execute()

execute()

execute()

execute()

sysFinalize()

configure()

initialize()

nextEvent()

finalize()

terminate()
page 34

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
and invariant masses as well as to calculate the impact parameter. When nominal mass values
are required they are retrieved via the ParticlePropertySvc. Since a primary vertex is required
a "dummy" algorithm RecPrimaryVertex retrieves the Monte Carlo primary vertex and uses
the quantites to fill a MyVertex object (/Event/MyAxVertices), which is then retrieved by the
SimpleAnalysisAlgorithm. Since the MyVertex object is created and registered in the Transient
Event store by the RecPrimaryVertex algorithm, the sequencing of RecPrimaryVertex and
SimpleAnalysisAlgorithm in the jobOptions file is very important. A protection is put in place
so that the SimpleAnalysisAlgorithm will return a failure code if not all of the necessary input
data exist in the store.

When doing physics analysis on Monte Carlo data, it is necessary to compare the
reconstructed decay with the Monte Carlo truth in order to calculate efficiencies. The
MCDecayFinder algorithm is an example of how to find any one step decay. The parent of the
decay and the list of its direct descendants are properties of the algorithm and can be specified
in the jobOptions file. If no decay is specified in the jobOptions this example will look for a
B0->pi+pi- decay. The Algorithm will retrieve the particle Geant3 ID from the
ParticlePropertySvc (the identifying particleID in MCParticles) and search the MCParticles to
find the requested parent and that is has the correct type and number of decay products. If a
decay is found kinematic variables are stored in an ntuple that can be accessed by PAW. In
addition the Algorithm uses the Message service with DEBUG or INFO levels to print a
summary of its behaviour for each event as well as for the job.
 page 35

GAUDI User Guide
Chapter 4 Getting started Version/Issue: 5/1
4.8 Other examples distributed with Gaudi

A number of examples is included in the current release of the framework. The intention is
that each example exercises and shows to an end-user how to make use of some part of the
functionality of the framework. The following table shows the list of available examples.

Table 3 List of available examples in current release

Example Name Target Functionality

AlgSequencer Illustrating the use of the sequencer algorithm provided in the GaudiAlg
package

Common Actually not a complete example: contains main program used by many
examples (AlgSequencer, DDexample, DumpEvent, FieldGeom, FortranAl-
gorithm, Histograms, MCPrimaryVertex, ParticleProperties, SimpleAnaly-
sis, ToolsAnalysis) and system specific Job Options include files common to
all examples

DDexample Illustrating the use of the detector description

DumpEvent Navigation of the LHCb transient event data model

FieldGeom Making available existing Sicb magnetic field and geometry data to Gaudi
algorithms. Example of nested algorithms

FortranAlgorithm Wrapping Fortran code in Gaudi

Histograms Basic functionality of the framework to execute a simple algorithm, access
event data and fill histograms.

MCPrimaryVertex Retrieve data using SmartDataPtr

Ntuples Two examples, reading and writing Ntuples

OpenScientist Example of use of OpenScientist with Gaudi (works only on Unix at CERN)

ParticleProperties Access the Particle Properties service to retrieve Particle Properties

RandomNumber Example of use of the Random Number service

Rio.Example1 Two examples, reading and writing persistent data with ROOT I/O

SimpleAnalysis A realistic example of using the framework for a physics analysis, including
access to Monte Carlo data, creation of reconstructed data and filling an
n-tuple

ToolsAnalysis Example of use of framework tools in an analysis
page 36

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
Chapter 5

Writing algorithms

5.1 Overview

As mentioned previously the framework makes use of the inheritance mechanism for
specialising the Algorithm component. In other words, a concrete algorithm class must inherit
from (“be derived from” in C++ parlance, “extend” in Java) the Algorithm base class.

In this chapter we first look at the base class itself. We then discuss what is involved in
creating concrete algorithms: specifically how to declare properties, what to put into the
methods of the IAlgorithm interface and the use of private objects. Finally we look at how to
nest algorithms.

5.2 Algorithm base class

Since a concrete algorithm object is-an Algorithm object it may use all of the public methods of
the Algorithm base class. The base class has no protected methods or data members, and no
public data members, so in fact, these are the only methods that are available. Most of these
methods are in fact provided solely to make the implementation of derived algorithms easier.
The base class has two main responsibilities: the initialisation of certain internal pointers and
the management of the properties of derived algorithm classes.

A part of the Algorithm base class definition is shown in Listing 5. Include directives, forward
declarations and private member variables have all been suppressed. It declares a constructor
and destructor; the three key methods of the IAlgorithm interface; several accessors to
services that a concrete algorithm will almost certainly require; a method to create a sub
algorithm, the two methods of the IProperty interface; and a whole series of methods for
declaring properties.
 page 37

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
Listing 5 The definition of the Algorithm base class.

1: class Algorithm : virtual public IAlgorithm,
2: virtual public IProperty {
3: public:
4: // Constructor and destructor
5: Algorithm(const std::string& name, ISvcLocator *svcloc);
6: virtual ~Algorithm();
7:
8: StatusCode sysInitialize();
9: //virtual StatusCode initialize();

10: StatusCode sysExecute();
11: //virtual StatusCode execute();
12: StatusCode sysFinalize();
13: //virtual StatusCode finalize();
14: const std::string& name() const;
15:
16: virtual bool isExecuted() const;
17: virtual StatusCode setExecuted(bool state);
18: virtual StatusCode resetExecuted();
19: virtual bool isEnabled() const;
20: virtual bool filterPassed() const;
21: virtual StatusCode setFilterPassed(bool state);
22:
23: IMessageSvc* msgSvc();
24: IDataProviderSvc* eventSvc();
25: IConversionSvc* eventCnvSvc();
26: IDataProviderSvc* detSvc();
27: IConversionSvc* detCnvSvc();
28: IHistogramSvc* histoSvc();
29: INtupleSvc* ntupleSvc();
30: IChronoStatSvc* chronoSvc();
31: IRndmGenSvc* randSvc();
32: ISvcLocator* serviceLocator();
33: void setOutputLevel(int level);
34:
35: StatusCode createSubAlgorithm(const std::string& type,
36: const std::string& name, Algorithm*& pSubAlg);
37: std::vector<Algorithm*>* subAlgorithms() const;
38:
39: virtual StatusCode setProperty(const Property& p);
40: virtual StatusCode getProperty(Property* p) const;
41: const Property& getProperty(const std::string& name) const;
42: const std::vector<Property*>& getProperties() const;
43: StatusCode setProperties();
44:
45: StatusCode declareProperty(const std::string& name, int& reference);
46: StatusCode declareProperty(const std::string& name, float& reference);
47: StatusCode declareProperty(const std::string& name, double& reference);
48: StatusCode declareProperty(const std::string& name, bool& reference);
49: StatusCode declareProperty(const std::string& name,
50: std::string& reference);
51: // Vectors of properties not shown
52: private:
53: // Data members not shown
54:
55: Algorithm(const Algorithm& a); // NO COPY ALLOWED
56: Algorithm& operator=(const Algorithm& rhs); // NO ASSIGNMENT ALLOWED
page 38

57: };

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
Constructor and Destructor The base class has a single constructor which takes two
arguments: The first is the name that will identify the algorithm object being instantiated and
the second is a pointer to one of the interfaces implemented by the application manager:
ISvcLocator. This interface may be used to request special services that an algorithm may
wish to use, but which are not available via the standard accessor methods (below).

The IAlgorithm interface Principally this consists of the three pure virtual methods that
must be implemented by a derived algorithm: initialize(), execute() and
finalize(). These are where the algorithm does its useful work and discussed in more
detail in section 5.3. Other methods of the interface are the accessor name() which returns the
algorithm’s identifying name, and sysInitialize(), sysFinalize(), sysExecute()
which are used internally by the framework. The latter three methods are not virtual and may
not be overridden.

Service accessor methods Lines 23 to 32 declare accessor methods which return pointers to
key service interfaces. These methods are available for use only after the Algorithm base class
has been initialised, i.e. they may not be used from within a concrete algorithm constructor,
but may be used from within the initialize() method (see 5.3.3). The services and
interface types to which they point are self explanatory (see also Chapter 2). Additional
services may be located using the serviceLocator() accessor method on line 32, as
described in section 11.2 of Chapter 11. Line 33 declares a facility to modify the message
output level from within the code (the message service is described in detail in section 11.4 of
Chapter 11).

Creation of sub algorithms The methods on lines 35 to 37 are intended to be used by a derived
class to manage sub-algorithms, as discussed in section 5.4.

Declaration and setting of properties As mentioned above, one of the responsibilities of the
base class is the management of properties. The methods in lines 39 to 43 are used by the
framework to set properties as defined in the job options file. The declareProperty
methods (lines 45 to 51) are intended to be used by a derived class to declare its properties.
This is discussed in more detail in section 5.3.2. and in Chapter 11.

Filtering The methods in lines 16 to 21 are used by sequencers and filters to access the state of
the algorithm, as discussed in section 5.5.

5.3 Derived algorithm classes

In order for an algorithm object to do anything useful it must be specialised, i.e. it must extend
(inherit from, be derived from) the Algorithm base class. In general it will be necessary to
implement the methods of the IAlgorithm interface, and declare the algorithm’s properties
to the property management machinery of the Algorithm base class. Additionally there is
one non-obvious technical matter to cover, namely algorithm factories.

5.3.1 Creation (and algorithm factories)

As mentioned before, a concrete algorithm class must specify a single constructor with the
same parameter signature as the constructor of the base class.
 page 39

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
In addition to this a concrete algorithm factory must be provided. This is a technical matter
which permits the application manager to create new algorithm objects without having to
include all of the concrete algorithm header files. From the point of view of an algorithm
developer it implies adding two lines into the implementation file, of the form:

where “ConcreteAlgorithm” should be replaced by the name of the derived algorithm
class (see for example lines 10 and 11 in Listing 6 below).

5.3.2 Declaring properties

In general a concrete algorithm class will have several data members which are used in the
execution of the algorithm proper. These data members should of course be initialised in the
constructor, but if this was the only mechanism available to set their value it would be
necessary to recompile the code every time you wanted to run with different settings. In order
to avoid this, the framework provides a mechanism for setting the values of member variables
at run time.

The mechanism comes in two parts: the declaration of properties and the setting of their
values. As an example consider the class TriggerDecision in Listing 6 which has a number
of variables whose value we would like to set at run time.

static const AlgFactory<ConcreteAlgorithm> s_factory;
const IAlgFactory& ConcreteAlgorithmFactory = s_factory;

Listing 6 Declaring member variables as properties.

1: //------- In the header file --------------------------------------//
2: class TriggerDecision : public Algorithm {
3:
4: private:
5: bool m_passAllMode;
6: int m_muonCandidateCut;
7: std::vector m_ECALEnergyCuts;
8: }
9: //------- In the implementation file -------------------------------//

10: static const AlgFactory<TriggerDecision> s_factory;
11: const IAlgFactory& TriggerDecisionFactory = s_factory;
12:
13: TriggerDecision::TriggerDecision(std::string name, ISvcLocator *pSL) :
14: Algorithm(name, pSL), m_passAllMode(false), m_muonCandidateCut(0) {
15: m_ECALenergyCuts.push_back(0.0);
16: m_ECALenergyCuts.push_back(0.6);
17:
18: declareProperty(“PassAllMode”, m_passAllMode);
19: declareProperty(“MuonCandidateCut”, m_muonCandidateCut);
20: declareProperty(“ECALEnergyCuts”, m_ECALEnergyCuts);
21: }
22:
23: StatusCode TriggerDecision::inialize() {
24: }
page 40

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
The default values for the variables are set within the constructor (within an initialiser list) as
per normal. To declare them as properties it suffices to call the declareProperty()
method. This method is overloaded to take an std::string as the first parameter and a
variety of different types for the second parameter. The first parameter is the name by which
this member variable shall be referred to, and the second parameter is a reference to the
member variable itself.

In the example we associate the name “PassAllMode” to the member variable
m_passAllMode, and the name “MuonCandidateCut” to m_muonCandidateCut. The
first is of type boolean and the second an integer. If the job options service (described in
Chapter 11) finds an option in the job options file belonging to this algorithm and whose name
matches one of the names associated with a member variable, then that member variable will
be set to the value specified in the job options file.

5.3.3 Implementing IAlgorithm

In order to implement IAlgorithm you must implement its three pure virtual methods
initialize(), execute() and finalize(). For a top level algorithm, i.e. one controlled
directly by the application manager, the methods are invoked as is described in section 4.6.
This dictates what it is useful to put into each of the methods.

Initialisation In a standard job the application manager will initialise all top level algorithms
exactly once before reading any event data. It does this by invoking the sysInitialize()
method of each top-level algorithm in turn. Figure 6 shows an example trace of the
initialization phase. Sub-algorithms are discussed in section 5.4.

The framework takes care of setting up internal references to standard services. The algorithm
properties are set before the initialize() method is called by calling the method
Algorithm::setProperties(). This makes a call to one of the methods of the job options
service passing a reference to itself as a parameter. The job options service then makes
repeated calls to the setProperty() method of the algorithm which actually assigns values
to the member variables.

The initialize() method can be used to do such things as creating histograms, or creating
sub-algorithms if required (see section 5.4).

If an algorithm fails to initialise it should return StatusCode::FAILURE. This will cause the
job to terminate.

Execution The guts of the algorithm class is in the execute() method. For top level
algorithms this will be called once per event for each algorithm object in the order in which
they were declared to the application manager. For sub-algorithms (see section 5.4) the control
flow may be as you like: you may call the execute() method once, many times or not at all.

Just because an algorithm derives from the Algorithm base class does not mean that it is
limited to using or overriding only the methods defined by the base class. In general, your
code will be much better structured (i.e. understandable, maintainable, etc.) if you do not, for
example, implement the execute() method as a single block of 100 lines, but instead define
your own utility methods and classes to better structure the code.
 page 41

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
If an algorithm fails in some manner, e.g. a fit fails to converge, or its data is nonsense it
should return from the execute() method with StatusCode::FAILURE. This will cause
the application manager to stop processing events and end the job. This default behaviour can
be modified by setting the <myAlgorithm>.ErrorMax job option to something greater than
1. In this case a message will be printed, but the job will continue as if there had been no error,

Figure 6 Algorithm initialization.

Te
xt

Algorithm

SubAlgorithm

SubAlgorithm

sysInitialize

initialize

createSubAlgorithm

"create"

"create"

sysInitialize

initialize

initialize

sysInitialize

createSubAlgorithm

setProperties

setProperties

setProperties
page 42

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
and just increment an error count. The job will only stop if the error count reaches the
ErrorMax limit set in the job option.

The framework (the Algorithm base class) calls the execute() method within a try/catch
clause. This means that any exception not handled in the execution of an Algorithm will be
caught at the level of sysExecute() implemented in the base class. The behaviour on these
exceptions is identical to that described above for errors. The measurement of elapsed CPU on
each execution of an algorithm is also implemented by default using the chrono service
(described in Chapter 11). This can be turned on or off with the boolean properties
ProfileInitialize, ProfileExecute, ProfileFinalize.

Finalisation The finalize() method is called at the end of the job. It can be used to analyse
statistics, fit histograms, or whatever you like. Similarly to initialization, the framework
invokes a sysFinalize method which in turn invokes the finalize() method of the
algorithm and of any sub-algorithms.

The following is a list of things to do when implementing an algorithm.

• Derive your algorithm from the Algorithm base class.

• Provide the appropriate constructor and the three methods initialize(),
execute() and finalize().

• Make sure you have implemented a factory by adding the magic two lines of code
(see 5.3.1).

5.4 Nesting algorithms

The application manager is responsible for initialising, executing once per event, and
finalising the set of top level algorithms, i.e. the set of algorithms specified in the job options
file. However such a simple linear structure is very limiting. You may wish to execute some
algorithms only for specific types of event, or you may wish to “loop” over an algorithm’s
execute method. Within the LHCb application framework the way to have such control is via
the nesting of algorithms. A nested (or sub-) algorithm is one which is created by, and thus
belongs to and is controlled by, another algorithm (its parent) as opposed to the application
manager. In this section we discuss a number of points which are specific to sub-algorithms.

In the first place, the parent algorithm will need a member variable of type Algorithm* (see
the code fragment below) in which to store a pointer to the sub-algorithm.

The sub-algorithm itself is created by invoking the createSubAlgorithm() method of the
Algorithm base class. The parameters passed are the type of the algorithm, its name and a
reference to the pointer which will be set to point to the newly created sub-algorithm. Note
that the name passed into the createSubAlgorithm() method is the same name that
should be used within the job options file for specifying algorithm properties.
 page 43

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
The algorithm type (i.e. class name) string is used by the application manager to decide which
factory should create the algorithm object.

The execution of the sub-algorithm is entirely the responsibility of the parent algorithm
whereas the initialize() and finalize() methods are invoked automatically by the
framework as shown in Figure 6. Similarly the properties of a sub-algorithm are also
automatically set by the framework.

Note that the createSubAlgorithm() method returns a pointer to an Algorithm object
not an IAlgorithm interface. This means that you have access to the methods of both the
IAlgorithm and IProperty interfaces, and consequently as well as being able to call
execute() etc. you can also explicitly call the setProperty(Property&) method of the
sub-algorithm, as is done in the following code fragment. For this reason with nested
algorithms you are not restricted to calling setProperty() only at initialisation. You may
also change the properties of a sub-algorithm during the main event loop.

Note also that the vector of pointers to the sub-algorithms is available via the
subAlgorithms() method.

5.5 Algorithm paths and filters

A physics application may need to execute different sequences of algorithms depending on
the physics signature. We refer to each such sequence as a path. Within different paths we may
want to execute the same algorithm class, but perhaps as a different instance with different
configuration parameters. We may wish to terminate processing (to save CPU time) on a
given path if a filter algorithm on the path fails some selection criteria.

A Sequencer class is available in the GaudiAlg package which manages algorithm paths
using the filtering protocols which are implemented in the Algorithm class. Listing 7 is an
extract of the job options file of the AlgSequencer example: a Sequencer instance is
created (line 2) with two members (line 5); each member is itself a Sequencer, implementing
the paths set up in lines 7 and 8, which consist of Prescaler, EventCounter and
HelloWorld algorithms.

Algorithm* m_pSubAlgorithm; // Pointer to the sub algorithm
// Must be a member variable of the parent class

std::string type; // Type of sub algorithm
std::string name; // Name to be given to subAlgorithm
StatusCode sc; // Status code returned by the call
sc = createSubAlgorithm(type, name, Algorithm*& m_pSubAlgorithm);

Algorithm *m_pSubAlgorithm;
sc = createSubAlgorithm(type, name, Algorithm*& m_pSubAlgorithm);
IntegerProperty p(“Counter”, 1024);
m_pSubAlgorithm->setProperty(p);
page 44

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
Algorithms can call setFilterPassed(true/false). Algorithms downstream of one
that sets this flag to false will not be executed, unless the StopOverride property of the
Sequencer has been set (line 6).

An algorithm instance is executed only once per event, even if it appears in multiple
Sequencers. Finally, algorithms can be enabled or disbaled at run time (which will become
useful in an interactive scripting environment when one is implemented in Gaudi)

The Prescaler and EventCounter classes are general purpose algorithms distributed with
the GaudiAlg package.

5.6 Algorithms vs. Services vs. Tools

Algorithms make use of framework services to perform their work. Services are generally
sizeable components that are setup and initialized once at the beginning of the job by the
framework and used by many algorithms as often as they are needed. It is not desirable in
general to require more than one instance of each service. Services cannot have a “state”
because there are many potential users of them so it would not be possible to guarantee that
the state is preserved in between calls. Since Algorithms are called once per event by the
framework, it is difficult to encapsulate a piece of code that needs to be called many times
during the processing of a single event. Examples are: single track fitter algorithm, association
to truth information algorithm, etc. For that we need to introduce another category of
processing objects that can encapsulate these somehow more simple algorithms. We have
called this category Tools. Algorithms use their own private set of instances of Tools to
perform their work. These instances are configured according to the needs of each particular
Algorithm. If an Algorithm does not need to specially configure a Tool it can share the Tool
instance with other Algorithms. A specific Service, the ToolSvc, acts as Tool provider (a kind
of tool box or tool factory) to Algorithms. An Algorithm requests the tools it needs to
ToolSvc and uses the provided abstract interfaces without having to know anything about
the implementation. Tools and the ToolSvc are described in detail in Chapter 12

Listing 7 Example jobOptions for a sequencer algorithms

1: ApplicationMgr.DLLs += { "GaudiAlg" };
2: ApplicationMgr.TopAlg = { "Sequencer/TopSequence" };
3:
4: // Setup the next level sequencers and their members
5: TopSequence.Members = {"Sequencer/Sequence1", "Sequencer/Sequence2"};
6: TopSequence.StopOverride = true;
7: Sequence1.Members = {"Prescaler/Prescaler1", "HelloWorld",

"EventCounter/Counter1"};
8: Sequence2.Members = {"Prescaler/Prescaler2", "HelloWorld",

"EventCounter/Counter2"};
9:

10: Prescaler1.PercentPass = 50.;
11: Prescaler2.PercentPass = 10.;
12: Prescaler1.OutputLevel = 4;
13: Prescaler2.OutputLevel = 4;
 page 45

GAUDI User Guide
Chapter 5 Writing algorithms Version/Issue: 5/1
page 46

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
Chapter 6

Accessing data

6.1 Overview

The data stores are a key component in the application framework. All data which comes
from persistent storage, or which is transferred between algorithms, or which is to be made
persistent must reside within a data store. In this chapter we look at how to access data within
the stores, and also at the DataObject base class and some classes related to it.

We also cover how to define your own data types and the steps necessary to save newly
created objects to disk files. The writing of the converters necessary for the latter is covered in
chapter 13.

6.2 Using the data stores

There are four data stores currently implemented within the Gaudi framework: the event data
store, the detector data store, the histogram store and the n-tuple store. They are described in
chapters 7, 8, 9 and 10 respectively. The stores themselves are no more than logical constructs
with the actual access to the data being via the corresponding services. Both the event data
service and the detector data service implement the same IDataProviderSvc interface,
which can be used by algorithms to retrieve and store data. The histogram and n-tuple
services implement extended versions of this interface (IHistogramSvc, INTupleSvc)
which offer methods for creating and manipulating histograms and n-tuples, in addition to
the data access methods provided by the other two stores.

Only objects of a type derived from the DataObject base class may be placed directly within
a data store. Within the store the objects are arranged in a tree structure, just like a Unix file
system. As an example consider Figure 7 which shows a part of the LHCb transient data
model. An object is identified by its position in the tree expressed as a string such as:
“/Event”, or “/Event/MC/MCParticles”. In principle the structure of the tree, i.e. the set
 page 47

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
of all valid paths, may be deduced at run time by making repeated queries to the event data
service, but this is unlikely to be useful in general since the structure will be largely fixed.

As stated above all interactions between the data stores and algorithms should be via the
IDataProviderSvc interface. The key methods for this interface are shown in Listing 8 but
the API reference should be consulted for the complete version.

Figure 7 The structure of a part of the LHCb event data model.

)�#�%

*�

*����%���#�

Event

MCEvent

ObjectVector<MCParticle>

*�"#�%��#�

*�)���+�%�

*�!����#�+�%�

*�"#�%#�+�%�

����+�%�

ObjectVector<MCVertex>

ObjectVector<MCCalorimeterHit>

*�+���+�%�

ObjectVector<MCCalorimeterHit>

ObjectVector<MCTrackingHit>ObjectVector<MCTrackingHit>ObjectVector<MCTrackingHit>

(&(&(

�#��

����

�����%���
�
�%#�
ObjectVector<AxPartCandidate>

���
RawEvent

AnaEvent

Listing 8 Some of the key methods of the IDataProviderSvc interface.

StatusCode findObject(const std::string& path, DataObject*& pObject);
StatusCode findObject(DataObject* node, const std::string& path,

DataObject*& pObject);
StatusCode retrieveObject(const std::string& path, DataObject*& pObject);
StatusCode retrieveObject(DataObject* node, const std::string& path,

DataObject*& pObject);

StatusCode registerObject(const std::string path, DataObject*& pObject);
StatusCode registerObject(DataObject *node, DataObject*& pObject);
page 48

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
The first four methods are for retrieving a pointer to an object that is already in the store. How
the object got into the store, whether it has been read in from a persistent store or added to the
store by an algorithm, is irrelevant.

The find and retrieve methods come in two versions: One version uses a full path name as an
object identifier, the other takes a pointer to a previously retrieved object and the name of the
object to look for below that node in the tree.

Additionally the “find” and “retrieve” methods differ in one important respect: the “find”
method will look in the store to see if the object is present (i.e. in memory) and if it is not will
return a null pointer. The “retrieve” method, however, will attempt to load the object from a
persistent store (database or file) if it is not found in memory. Only if it is not found in the
persistent data store will the method return a null pointer (and a bad status code of course).

6.3 Using data objects

Whatever the concrete type of the object you have retrieved from the store the pointer which
you have is a pointer to a DataObject, so before you can do anything useful with that object
you must cast it to the correct type, for example:

where after the dynamic cast all of the methods of the MCParticleVector class become
available. In the event that the object which is returned from the store does not match the type
to which you try to cast it, an exception will be thrown. If you do not catch this exception then
your program will exit, probably with an obscure message.

As mentioned earlier a certain amount of run-time investigation may be done into what data
is available in the store. For example, suppose that we have various sets of testbeam data and
each data set was taken with a different number of detectors. If the raw data is saved on a
per-detector basis the number of sets will vary. The following code fragment in Listing 9
illustrates how an algorithm may loop over the data sets without knowing a priori how many
there are.

DataObject *pObject;
StatusCode sc = eventSvc()->retrieveObject(“/Event/MC/MCParticles”,pObject);
if(sc.isFailure())

return sc;

MCParticleVector *tv = 0;
try {

tv = dynamic_cast<MCParticleVector *> (pObject);
} catch(...) {

// Print out an error message and exit
}
// tv may now be manipulated.
 page 49

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
The last two methods shown in Listing 8 are for registering objects into the store. Suppose that
an algorithm creates objects of type UDO from, say, objects of type MCParticle and wishes
to place these into the store for use by other algorithms. Code to do this might look something
like:

Once an object is registered into the store, the algorithm which created it relinquishes
ownership. In other words the object should not be deleted. This is also true for objects
which are contained within other objects, such as those derived from or instantiated from the
ObjectVector class (see the following section). Furthermore objects which are to be
registered into the store must be created on the heap, i.e. they must be created with the new
operator.

6.4 Object containers

As mentioned before, all objects which can be placed directly within one of the stores must be
derived from the DataObject class. There is, however, another (indirect) way to store objects

Listing 9 Code fragment for accessing an object from the store

1: std::string objectPath = “Event/RawData”;
2: DataObject* pObject;
3: StatusCode sc;
4:
5: sc = eventSvc()->retrieveObject(objectPath, pObject);
6:
7: IdataDirectory *dir = pObject->directory();
8: IdataDirectory::DirIterator it;
9: for(it = dir->begin(); it != dir->end(); it++) {

10:
11: DataObject *pDo;
12: sc = retrieveObject(pObject, (*it)->localPath(), pDo);
13:
14: // Do something with pDo
15: }

Listing 10 Registering of objects into the event data store

1: UDO* pO; // Pointer to an object of type UDO (derived from DataObject)
2: StatusCode sc;
3:
4: pO = new UDO;
5: sc = eventSvc()->registerObject(“/Event/Recon/tmp”,”OK”, pO);
6:
7: // THE NEXT LINE IS AN ERROR, THE OBJECT NOW BELONGS TO THE STORE
8: delete pO;
9:

10: UDO autopO;
11: // ERROR: AUTOMATIC OBJECTS MAY NOT BE REGISTERED
12: sc = eventSvc()->registerObject(“/Event/Recon/tmp”, “notOK”, autopO);
page 50

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
within a store. This is by putting a set of objects (themselves not derived from DataObject and
thus not directly storable) into an object which is derived from DataObject and which may
thus be registered into a store.

An object container base class is implemented within the framework and a number of
templated object container classes may be implemented in the future. For the moment, two
“concrete” container classes are implemented: ObjectVector<T> and ObjectList<T>.
These classes are based upon the STL classes and provide mostly the same interface. Unlike
the STL containers which are essentially designed to hold objects, the container classes within
the framework contain only pointers to objects, thus avoiding a lot of memory to memory
copying.

A further difference with the STL containers is that the type T cannot be anything you like. It
must be a type derived from the ContainedObject base class, see Figure 8. In this way all
“contained” objects have a pointer back to their containing object. This is required, in
particular, by the converters for dealing with links between objects. A ramification of this is
that container objects may not contain other container objects (without the use of multiple
inheritance).

As mentioned above, objects which are contained within one of these container objects may
not be located, or registered, individually within the store. Only the container object may be
located via a call to findObject() or retrieveObject(). Thus with regard to interaction
with the data stores a container object and the objects that it contains behave as a single object.

The intention is that “small” objects such as clusters, hits, tracks, etc. are derived from the
ContainedObject base class and that in general algorithms will take object containers as
their input data and produce new object containers of a different type as their output.

The reason behind this is essentially one of optimization. If all objects were treated on an
equal footing, then there would be many more accesses to the persistent store to retrieve very

Figure 8 The relationship between the DataObject, ObjectVector and ContainedObject classes.

parent

DataObject

ObjectVector

T

ObjectContainerBase

T

ContainedObject
 page 51

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
small objects. By grouping objects together like this we are able to have fewer accesses, with
each access retrieving bigger objects.

6.5 Using object containers

The code fragment below shows the creation of an object container. This container can contain
pointers to objects of type MCTrackingHit and only to objects of this type (including
derived types). An object of the required type is created on the heap (i.e. via a call to new) and
is added to the container with the standard STL call.

After the call to push_back() the hit object “belongs” to the container. If the container is
registered into the store, the hits that it contains will go with it. Note in particular that if you
delete the container you will also delete its contents, i.e. all of the objects pointed to by the
pointers in the container.

Removing an object from a container may be done in two semantically different ways. The
difference being whether on removal from a container the object is also deleted or not.
Removal with deletion may be achieved in several ways (following previous code fragment):

The method pop_back() removes the last element in the container, whereas erase()
maybe used to remove any other element via an iterator. In the code fragment above it is used
to remove the last element also.

Deleting a contained object, the third option above, will automatically trigger its removal
from the container. This is done by the destructor of the ContainedObject base class.

If you wish to remove an object from the container without destroying it (the second possible
semantic) use the release() method:

Since the fate of a contained object is so closely tied to that of its container life would become
more complex if objects could belong to more than one container. Suppose that an object
belonged to two containers, one of which was deleted. Should the object be deleted and

ObjectVector <MCTrackingHit> hitContainer;
MCTrackingHit* h1 = new MCTrackingHit;
hitContainer.push_back(h1);

hitContainer.pop_back();
hitContainer.erase(end());
delete h1;

hitContainer.release(h1);
page 52

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
removed from the second container, or not deleted? To avoid such issues an object is allowed
to belong to a single container only.

If you wish to move an object from one container to another, you must first remove it from
one and then add to the other. However, the first operation is done implicitly for you when
you try to add an object to a second container:

Since the object h1 has a link back to its container, the push_back() method is able to first
follow this link and invoke the release() method to remove the object from the first
container, before adding it into the second.

In general your first exposure to object containers is likely to be when retrieving data from the
event data store. The sample code in Listing 11 shows how, once you have retrieved an object
container from the store you may iterate over its contents, just as with an STL vector. Note that
the typedef is simply to save typing!

The variable tracks is set to point to an object in the event data store of type:
ObjectVector<MCParticle> with a dynamic cast (not shown above). An iterator (i.e. a
pointer like object for looping over the contents of the container) is defined on line 3 and this
is used within the loop to point consecutively to each of the contained objects. In this case the
objects contained within the ObjectVector are of type “pointer to MCParticle”. The
iterator returns each object in turn and in the example, the energy of the object is used to fill a
histogram.

6.6 Data access checklist

A little reminder:

• Do not delete objects that you have registered.

• Do not delete objects that are contained within an object that you have registered.

container1.push_back(h1); // Add to fist container

container2.push_back(h1); // Move to second container
// Internally invokes release().

Listing 11 Use of the ObjectVector templated class.

1: typedef ObjectVector<MCParticle> MCParticleVector;
2: MCParticleVector *tracks;
3: MCParticleVector::iterator it;
4:
5: for(it = tracks->begin(); it != tracks->end(); it++) {
6: // Get the energy of the track and histogram it
7: double energy = (*it)->fourMomentum().e();
8: m_hEnergyDist->fill(energy, 1.);
9: }
 page 53

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
• Do not register local objects, i.e. objects NOT created with the new operator.

• Do not delete objects which you got from the store via findObject() or
retrieveObject().

• Do delete objects which you create on the heap, i.e. by a call to new, and which you
do not register into a store.

6.7 Defining new data types

Most of the data types which will be used within Gaudi will be used by everybody and thus
packaged and documented centrally. However, for your own private development work you
may wish to create objects of your own types which of course you can always do with C++ (or
Java) . However, if you wish to place these objects within a store, either so as to pass them
between algorithms or to have them later saved into a database or file, then you must derive
your type from either the DataObject or ContainedObject base class.

Consider the example below:

This defines a class UDO which since it derives from DataObject may be registered into, say,
the event data store. (The class itself is not very useful as its sole attribute is a single integer
and it has no behaviour).

The thing to note here is that if the appropriate converter is supplied, as discussed in Chapter
13, then this class may also be saved into a persistent store (e.g. a ROOT file or an Objectivity
database) and read back at a later date. In order for the persistency to work two things are
required: the unique class identifier number (CLID_UDO in the example), and the clID()
method which returns this identifier.

Types which are derived from ContainedObject are implemented in the same way. The
only point to notice is that it is the classID() method which must be implemented. This is
because contained objects may only reside in the store when they belong to a container, e.g. an

const static CLID CLID_UDO = 135; // Collaboration wide Unique number

class UDO : public DataObject {
public:

UDO() : DataObject(), m_n(0) {
}

static CLID& classID() { return CLID_UDO; }
virtual CLID& clID() { return CLID_UDO; }

int n(){ return m_n; }
void setN(int n){ m_n = n; }

private:
int m_n;

}

page 54

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
ObjectVector<T> which is registered into the store. The class identifier of a concrete object
container class is calculated (at run time) from the type of the objects which it contains. Since
the container may be empty a static method is required.

6.8 The SmartDataPtr/SmartDataLocator utilities

The usage of the data services is simple, but extensive status checking and other things tend to
make the code difficult to read. It would be more convenient to access data items in the store
in a similar way to accessing objects with a C++ pointer. This is achieved with smart pointers,
which hide the internals of the data services.

6.8.1 Using SmartDataPtr/SmartDataLocator objects

The SmartDataPtr and a SmartDataLocator are smart pointers that differ by the access
to the data store. SmartDataPtr first checks whether the requested object is present in the
transient store and loads it if necessary. SmartDataLocator only checks for the presence of
the object but does not attempt to load it.

Both SmartDataPtr and SmartDataLocator objects use the data service to get hold of the
requested object and deliver it to the user. Since both objects have similar behaviour and the
same user interface, in the following only the SmartDataPtr is discussed.

An example use of the SmartDataPtr class is shown below.

The SmartDataPtr class can be thought of as a normal C++ pointer having a constructor. It
is used in the same way as a normal C++ pointer.

The SmartDataPtr and SmartDataLocator offer a number of possible constructors and
operators to cover a wide range of needs when accesing data stores. Check the online
reference documentation [2] for up-to date information concerning the interface of these
utilities.

Listing 12 Use of a SmartDataPtr object.

1: StatusCode myAlgo::execute() {
2: MsgStream log(msgSvc(), name());
3: SmartDataPtr<Event> evt(eventSvc(),”/Event”);
4: if (evt) {
5: // Print the event number
6: log << MSG::INFO << “ Run:” << evt->run()
7: << “ Event:” << evt->event() << endreq;
8: }
9: else {

10: log << MSG::ERROR << “Error accessing event” << endreq;
11: return StatusCode::FAILURE;
12: }
13: }
 page 55

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
6.9 Smart references and Smart reference vectors

Smart references and Smart reference vectors are similar to smart pointers, they are used
within data objects to reference other objects in the transient data store. They provide safe
data access and automate the loading on demand of referenced data, and should be used
instead of C++ pointers. For example, suppose that MC particles are already loaded but MC
vertices are not, and that an algorithm dereferences a variable pointing to the origin vertex: if
a smart reference is used, the MC vertices would be loaded automatically and only after that
would the variable be dereferenced. If a C++ plain pointer were used instead, the program
would crash. Smart references provide an automatic conversion to a pointer to the object and
load the object from the persistent medium during the conversion process.

Smart references and Smart reference vectors are declared inside a class as:

The syntax of usage of smart references is identical to plain C++ pointers. The Algorithm only
sees a pointer to the MCVertex object:

All LHCbEvent data types use the Smart references and Smart reference vectors to reference
themselves.

class MCParticle {
private:

/// Smart reference to origin vertex
SmartRef<MCVertex> m_originMCVertex;

 /// Vector of smart references to decay vertices
 SmartRefVector<MCVertex> m_decayMCVertices;

 public:
 /// Access the origin Vertex
 /// Note: When the smart reference is converted to MCVertex* the object
 /// will be loaded from the persistent medium.
 MCVertex* originMCVertex() { return m_originMCVertex; }
}

// Use a SmartDataPtr to get the MC particles from the event store
SmartDataPtr<MCParticleVector> particles(eventSvc(),"/Event/MC/MCParticles");
MCParticleVector::const_iterator iter;

// Loop over the particles to access the MCVertex via the SmartRef
for(iter = particles->begin(); iter != particles->end(); iter++) {

MCVertex* originVtx = (*iter)->originMCVertex();
if(0 != originVtx) {

std::cout << "Origin vertex = " << *(*iter) << std::endl; }
}

page 56

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
6.10 Saving data to a persistent store

Suppose that you have defined your own data type as discussed in the previous section.
Suppose futhermore that you have an algorithm which uses, say, SicB data to create instances
of your object type which you then register into the transient event store. How can you save
these objects for use at a later date?

You must do the following:

• Write the appropriate converter (see Chapter 13)

• Put some instructions (i.e. options) into the job option file

Register your object in the store us usual, typically in the execute() method of your
algorithm.

In order to actually trigger the conversion and saving of the objects at the end of the current
event processing it is necessary to inform the application manager. This requires some options
to be specified in the job options file:

The first option tells the application manager that you wish to create an output stream called
“DSTWriter”. You may create as many output streams as you like and give them whatever
name you prefer.

For each output stream object which you create you must set several properties. The
ItemList option specifies the list of paths to the objects which you wish to write to this
output stream. The number after the “#” symbol denotes the number of directory levels below
the specified path which should be traversed. The EvtDataSvc option specifies in which
transient data service the output stream should search for the objects in the ItemList. The
EvtConversionSvc option specifies the conversion service which should be used to convert
the objects and the output file or database name is set with the OutputFile option.

In addition to this the event persistency service must be set up correctly by specifying all
necessary conversion services in the job options as shown in the much more comprehensive
example distributed with the framework (Rio.Example1).

// myAlg implementation file

StatusCode myAlg::execute() {
// Create a UDO object and register it into the event data store
UDO* p = new UDO();
eventSvc->registerObject(“/Event/myStuff/myUDO”, p);

}

ApplicationMgr.OutStream = { "DstWriter" };

DstWriter.ItemList = { "/Event#1", "/Event/MyTracks#1"};
DstWriter.EvtDataSvc = "EventDataSvc";
DstWriter.EvtConversionSvc = "RootEventCnvSvc";
DstWriter.OutputFile = "result.root";
 page 57

GAUDI User Guide
Chapter 6 Accessing data Version/Issue: 5/1
page 58

GAUDI User Guide
Chapter 7 LHCb Event Data Model Version/Issue: 5/1
Chapter 7

LHCb Event Data Model

In this chapter we present the structure of the LHCb Event Data model. For the moment only
a small part of the model is implemented in the public release. Various sub-detector specific
parts are under development and are implemented in private code. The table at
http://lhcb.cern.ch/computing/Support/html/ConvertedSICBBanks.htm shows the current
implementation status by comparison with SICB banks.

7.1 Top level event data structures

The event data objects are located in the event data store, which is one of the stored described
in Chapter 6. The data in the store are arranged in a tree. This facilitates the location of objects
within the store by human-readable identifiers. The tree structure consists of an Event root
branching four sub-trees: Monte Carlo event, Raw event, Reconstructed event, and Analysis
event. A fifth branch for FrontEnd (FE) has been implemented in private code (available
under L1/VELO CVS tree). Retrieving an identifiable object (see Chapter 6) from the store is
based on the knowledge of the logical path. The paths so far implented are shown in the tables
that follow. They are defined in the files:

LHCbEvent/TopLevel/EventModel.h

LHCbEvent/TopLevel/EventModel.cpp:

Table 4 Top level Event data model

Logical Path Type

“/Event” Event

“/Event/MC” MCEvent

“/Event/Raw” RawEvent

“/Event/Rec” RecEvent

“/Event/Anal” AnalEvent
 page 59

http://lhcb.cern.ch/computing/Support/html/ConvertedSICBBanks.htm

GAUDI User Guide
Chapter 7 LHCb Event Data Model Version/Issue: 5/1
The LHCbEvent/TopLevel directory also contains the include files for the top level event
classes (which are all derived from DataObject and are therefore identifiable). The
identifiable objects in the MonteCarlo, Raw, Reconstructed, and Analysis event sub-trees are
all container classes, containing instances of classes that inherit (directly or indirectly) from
the class ContainedObject.

7.2 Monte Carlo event

The Monte Carlo event sub-tree contains output from the event generators and from the
Monte Carlo tracking. The include files for the contained classes can be found in
LHCbEvent/MonteCarlo/*.h with obvious names

7.3 Raw event

The Raw event sub-tree should contain the raw data collected by the data acquisition and
simulated data in the same format (i.e. with detector and electronics response applied). The
include files for the contained classes can be found in LHCbEvent/Raw/*.h with obvious
names. Currently only the classes RawInnerTrackerMeass and RawOuterTrackerMeass
are implemented, which are for the time being copies of the SicB banks WIDG and WODG

Table 5 Monte Carlo Event data model

Logical Path Container Type

“/Event/MC/MCParticles” MCParticleVector

“/Event/MC/MCVertices” MCVertexVector

“/Event/MC/MCTrackerHits” MCTrackingHitVector

“/Event/MC/MCVertexHits” MCTrackingHitVector

“/Event/MC/MCVertexPileUpHits” MCTrackingHitVector

“/Event/MC/MCMuonHits” MCTrackingHitVector

“/Event/MC/MCRichRadiatorHits” MCRichRadiatorHitVector

“/Event/MC/MCRichPhotodetectorHits” MCRichPhotodetectorHitVector

“/Event/MC/MCECalHits” MCCalorimeterHitVector

“/Event/MC/MCHCalHits” MCCalorimeterHitVector

“/Event/MC/MCPreshowerHits” MCCalorimeterHitVector
page 60

GAUDI User Guide
Chapter 7 LHCb Event Data Model Version/Issue: 5/1
7.4 Reconstructed event

The Reconstructed event sub-tree is meant to contain the output of the reconstruction
program. It is currently empty.

7.5 Analysis event

The Analysis event sub-tree should contain the objects created and used during data
analysis.The include files for the contained classes can be found in
LHCbEvent/Analysis/*.h with obvious names. Currently only the class
AxPartCandidate is implemented, derived from the SICB bank AXTK.

7.6 Utilities

A series of utility classes are defined:

• DetectorDataObject, CLHEPStreams, TimeStamp, Classification,
ProcessingVersion, CellId, ParticleId, TriggerPattern,
RandomNumberSeed, SummaryPID, and SummarySeesDetectors. These are
used in several places in the LHCb event data model.

Table 6 Raw Event data model

Logical Path Container Type

“/Event/Raw/RawOuterTrackerMeas” RawOuterTrackerMeasVector

“/Event/Raw/RawInnerTrackerMeas” RawInnerTrackerMeasVector

Table 7 Analysis Event data model

Logical Path Container Type

“/Event/Anal/AxPartCandidates” AxPartCandidateVector
 page 61

GAUDI User Guide
Chapter 7 LHCb Event Data Model Version/Issue: 5/1
page 62

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
Chapter 8

Detector Description

8.1 Overview

In this chapter we describe how we make available to the physics application developed
using the framework the information related to the detector that resides in the detector
description database (DDDB). The DDDB is the persistent storage for all the versions of the
detector data needed to describe and qualify the detecting apparatus in order to interpret the
event data.

The final clients of the detector description are the algorithms that need this information in
order to perform their job (reconstruction, simulation, etc.). To provide this information, there
needs to be a sub-detector specific part that understands the sub-detector in question and uses
a set of common services. The detector description we are providing in GAUDI is nothing else
than a framework for developers to provide the specific detector information to algorithms by
using as much as possible common or generic services.

In the following sections we begin with an overview of the DDDB. We then discuss how to
access the detector description data in the Gaudi transient detector data store. This is followed
by a discussion of the logical structure of the Gaudi detector description. Finally we describe
in detail how the detector decription can be built and made persistent using the XML markup
language.

8.2 Detector Description Database

The detector description database (DDDB), see Figure 9, includes a physical and a logical
description of the detector. The physical description covers dimensions, shape and material of
the different types of elements from which the detector is constructed. There is also
information which corresponds to each element which is actually manufactured and
assembled into a detector, for example the positioning of each element. Both active and
passive elements should be included. The description of active elements should allow for the
 page 63

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
specification of deficiencies (dead channels), alignment corrections, etc. and also detector
response characteristics, e.g. energy normalization in calorimeters, drift velocity in gas
chambers.

The logical description provides two main functions. The first is a simplified access to
particular parts of a physical detector description. This could be a hierarchical description
where the a given detector setup is composed of various sub-detectors, each of which is made
up of a number stations, modules or layers, etc. and there would be a simple way for a client
to use this description to navigate to the information of interest. The second function of the
logical description is to provide a means of detector element identification. This allows for
different sets of information which are correlated to specific detector elements to be correctly
associated with each other

In a detector description, the definition of the detector elements and the data associated to
their physical description may vary over time, for instance due to real or hypothetical changes
to the detector. Each such change should be recorded as a different version of the detector
element. Additionally, it should be possible to capture for an entire description a version of
each of the elements and associate a name to that set. This is similar to the way CVS allows
one to tag a set of files so that one does not need to know the independent version numbers
for each file in the set.

Figure 9 Overview of the Detector Description model.
page 64

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
8.3 Using the Detector Data transient store

8.3.1 Structure of the transient store

The transient representation of the detector description is implemented as a standard GAUDI
data store. Refer to Chapter 6 for general information on how to access data in stores. The
structure of the detector transient store is represented in Figure 10. There are various branches
in the hierarchical tree structure and probably there will be more of them defined in the
future.

At present there are three top level catalogs in the transient store. The main catalog, called
“Structure” contains the logical structure of the detector identified by the “setup name” i.e.
“LHCb” containing the description of the detector and this catalog is used for identification
and navigation purposes. Other catalogs are the palette of logical volumes and solids, called
“Geometry”, used for the geometry description and the palette of materials, called
“Materials”, used to describe the material properties of the solids needed for the detector
simulation, etc.

8.3.2 Accessing detector data on the transient store

An algorithm that needs to access a given detector part uses the detector data service to locate
the relevant DetectorElement. This operation of locating the required detector description
object can be generally done during the initialization phase of the algorithm. Contrary to the
Event Data, the Detector Data store is not cleared for each event and the references to detector
elements remain valid and are updated automatically during the execution of the program.

Figure 10 The structure of part of the LHCb detector data transient store.
 page 65

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
Locating the relevant detector element is done using the standard IDataProviderSvc
interface via the detSvc() accessor as shown in the code fragment below:.

Similarly the user can retrieve an array of such references. The following code fragment can be
used to prepare an array with pointers to all of the Muon stations. Here we use an STL vector
of pointers to DeMuonStation objects to store the retrieved Muon stations.

8.3.3 Using the DetectorElement class

The DetectorElement class implements the IDetectorElement interface. Currently,
only the geometry() accessor method is implemented. The rest of the interface will be
implemented in the next releases of the detector description package. In addition,
DetectorElement implements the IValidity interface. This interface is used to check if
the detector element is synchronized with the current event. If the detector element contains
information no longer valid at the time the current event was generated, its content must be
updated from the persistent storage. In the current implementation it is not foreseen for end
users to use this interface directly.

The accessor method geometry() gives access to geometry information offered by the
interface of type IGeometryInfo. This interface allows the retrieval of a reference to a logical
volume associated with the given detector element, its material property, the position in the
geometrical hierarchy. In addition to that you can ask it questions like:

Listing 13 Retrieving a detector element by using smart pointers

SmartDataPtr<DetectorElement> vertex(detSvc(),
“/dd/Structure/Vertex/VStation01”);

if(!vertex) {
// Error, detector element has not been retrieved

}

Listing 14 Retrieving a vector of detector elements using smart references

std::vector<DeMuonStation*> d_stations;

SmartDataPtr<DetectorElement> stations(detSvc(),
"/dd/Structure/LHCb/Muon/Stations");

if(!stations) {
return StatusCode::FAILURE;

}

/// Loop over all the muon stations found in the detector model
for (DataObject::DirIterator d = stations->dirBegin();

d != stations->dirEnd();
d++)

{
SmartDataPtr<DeMuonStation> s(detSvc(),(*d)->fullpath());
if(!s) {
return sc;

}
 d_stations.push_back(s);

}

page 66

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
1. Transformation matrix from the Global to the Local Reference system

2. Transformation matrix from the Local to the Global Reference system

3. Perform transformation of point from the Global to Local Reference system

4. Perform transformation of point from the Local to Global Reference system

5. Name of daughter volume (of current volume) which contains given (global) point

6. Get a pointer to daughter volume which contains given (global) point

7. Name of daughter volume (at deeper hierarchical level) which contains given point

8. Get a pointer to daughter volume (on deeper level) to which contains given point

9. Get the exact full geometry location1

10. Whether the given point is inside the associated logical volume or not

11. A pointer to the associated logical volume

For example:

8.4 General features of the geometry tree

The construction of the geometry tree within the Gaudi framework is based on the following
postulates:

• The geometry tree is constructed from Logical Volumes and Physical Volumes.

1. This operation can be time consuming!

Listing 15 Getting pointer to a logical volume and retrieving its various properties

SmartDataPtr<DetectorElement> vs(detSvc(),
"/dd/Structure/LHCb/Vertex/VStation01");

if(!vs) {
return StatusCode::FAILURE;

}

/// Report the material and its radiation length
ILVolume* stvol = vs->geometry()->lvolume();
log << MSG::INFO << vs->fullpath() << " is made of " << stvol->materialName()

<< " with radiation length " << stvol->material()->radiationLength()
<< endreq;

/// Retrieve the shape information
const ISolid* stsolid = stvol->solid();

/// Get the rotation and translation
HepTransform3D sttrans = vs->geometry()->matrixInv();
HepRotation strot = sttrans.getRotation();
Hep3Vector stvec = sttrans.getTranslation();
 page 67

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
• There are no "up-links" in the geometry tree. It means that each node has no
information about the "up" (or "parent", "mother") node.

• Each Logical Volume has a information about its "down" ("children") nodes,
represented by Physical Volumes

• Each Logical Volume has information about its shape and dimensions ("Solid").

• Each Logical Volume has access to information about the material content.

• Neither Logical Volumes nor Physical Volumes have any information about their
absolute position in the space.

• Logical Volumes have no information about their own position relative to other Logical
Volumes.

• Each Physical Volume has a information about its position inside the mother ("parent")
Logical Volume. This is the only geometry information available in the whole tree.

• All boolean operations on Logical Volumes and Physical Volumes are strictly
forbidden1. Boolean operations should be performed at the level of Solids. This is one
of the most essential postulates of the Gaudi geometry structure.

The geometry tree which fulfils all these postulates represents a very effective, simple and
convenient tool for description of the geometry. Such a tree is easily formalized. It has many
features which are similar to the features of the geometry tree used within the Geant4 toolkit
and could easily be transformed to the Geant4 geometry description.

Some consequences of these postulates are:

• The top-level Logical Volume (presumably the experimental hall, or cave, or the whole
LHCb detector) defines the absolute coordinate reference system. In other words, the
null-point (0,0,0) in the so called Global Reference System is just the center of the top
Logical Volume.

• All geometry calculations, computations, inputs and outputs, performed with the
usage of a Logical Volume are in the local reference system of this Logical Volume.

• All geometry calculations, computations, inputs and outputs, performed with the
usage of a Physical Volume are in the local reference system of its parent Logical
Volume.

Sometimes one needs a more efficient way of extracting information from the geometry tree or
to compute the unique location of a point in the geometry tree. For these purposes, a
simplified detector description tree is introduced into the GAUDI framework2.

The next subsections give brief details of the implementations of Logical Volumes, Physics
Volumes and Solids in Gaudi. More detailed documentation can be found at
http://lhcb.cern.ch/computing/Components/html/GaudiReference.htm

1. This is equivalent to the absence of the 'MANY' flag in the GEANT3 toolkit.
2. Within the Geant4 toolkit there exist two approaches for solving the same problem:
Read-Out-Geometry Tree and Navigator. Our approach is quite close to the combined usage of
both.
page 68

http://lhcb.cern.ch/computing/Components/html/GaudiReference.htm

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
8.4.1 Logical Volumes

The notion of Logical Volume is implemented in GAUDI by the class LVolume. LVolume is
an identifiable object and therefore inherits from class DataObject and can be identified
in the transient data store by a unique name (its “path”). It implements the ILVolume and
IValidity interfaces.

8.4.2 Physical Volumes

The notion of Physical Volume in the Gaudi geometry is extremely primitive, it is just a Logical
volume which is positioned inside its mother Logical Volume. It consists of the name of the Logical
Volume to be positioned inside the mother Logical Volume, together with the transformation
matrix from the local reference system of the mother Logical Volume to the local reference
system of the daughter Logical Volume. This is implemented in Gaudi by the class PVolume.
PVolume is not identifiable and implements the IPVolume interface.

8.4.3 Solids

All solids implement the ISolid interface. Currently, five types of “primitive” solids are
implemented: Boxes, Trapezoids, Tube segments, Conical tube segments and Sphere segments. These
were chosen from the most frequently used shapes in the GEANT3 and GEANT4 toolkits -
more shapes can be implemented if necessary. In addition, Boolean Solids have been defined,
which allow Subtraction, Union and Intersection operations on solids, to build complex shapes.

8.5 Persistent representation

The GAUDI detector description is based on text files whose structure is described by XML
(eXtendable Markup Language), a standard language which allows the definition of custom
tags, unlike the fixed set of tags of HTML used for WWW. XML files are understandable by
humans as well as computers. Data in XML are self-descriptive so that by looking at the XML
data one can easily guess what the data mean. Unlike the HTML tags, tags in XML do not
define how to render or visualize the data. This is left to an application which understands the
data and can visualize them if wanted. An advantage of XML is that there exists plenty of
software which can be used for parsing and analysing, as it is an industry standard.

In the future we expect to replace the text files by an object persistency based on an object
oriented database, for example ObjectivityDB, but the data will continue to be described in
XML.
 page 69

http://lhcb.cern.ch/computing/Components/html/GaudiReference.htm

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
8.5.1 Brief introduction to XML

8.5.1.1 XML Basics

XML is extendible, meaning that a user can define his own markup language with his own
tags. The tags define the meaning of the data they represent or contain. They act as data
describers. For example, Listing 16: shows the XML file which describes an e-mail.

At the first look this markup language looks like screwed-up HTML. This is because both
HTML and XML have their roots in SGML, but they are used for different purposes. From the
example above it’s not clear how to present the data described there nor how to visualize
them. What is clear however is the meaning of the data items encoded in XML. Thus one can
easily recognize the data items and guess what they mean. On the other hand it is relatively
easy to instruct a computer program what to do with the given data item according to the
XML markup elements it is encapsulated in. Let us analyse the example shown above.

8.5.1.2 XML components

XML declaration must be at the beginning of each XML document. It is the first line in the
example. It says that this file is an XML file conforming to the XML standard version 1.0 and is
encoded in UTF-8 encoding. The encoding is very important because XML has been designed
to describe data using the Unicode standard for text encoding. This means that all XML
documents are treated as 16 bit Unicode characters instead of usual ASCII. So, even if you
write your XML files using 7 or 8 bit ASCII, all the XML applications will work with it as with
16 bit Unicode XML data. The encoding information is important, for example when an XML
document is transferred over the Internet to some other country where a different encoding is
used. If the receiving application can guess the XML encoding from the received file, it can
apply transcoding methods to convert the file into proper local encoding, thus preserving
readability of the data.

XML comments look like comments in SGML or HTML. They start with <!-- and end with
-->. Comments in XML cannot be nested.

XML elements are the markup components describing data in XML. In the example we had
the following XML elements: Email, TimeStamp, Sender, Recipient, Subject,
Body, Signature. The very basic and mandatory rule of XML is that all XML element tags

Listing 16 Simple XML file describing an e-mail

<?xml version=‘1.0’ encoding=‘UTF-8’?>
<!-- This is an example of XML -->
<Email>

<TimeStamp time=”11:38:43” date=”22/11/1999” />
<Sender>sender@cern.ch</Sender>
<Recipient>recipient@cern.ch</Recipient>
<Subject>Lunch...</Subject>
<Body> Could we meet at 14:00?
<Signature>Sender’s signature</Signature>

</Body>
</Email>
page 70

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
must nest properly and there must be only one root XML element at the top level of each
XML document, which contains all the others. Proper nesting means that each XML element
has its opening and closing tag and the closing tag must appear before the parent element’s
closing tag, as shown in Listing 17. Following these rules one can always produce
well-formed XML documents.

XML elements can have attributes and a content. Attributes usually describe the properties of
the given element. The value of the attribute follows the assignment operator and is enclosed
inside double or single quotes.In the content can appear text data or other properly nested
elements. The text data and nested elements can be mixed inside the content.

8.5.1.3 Well formed versus Valid XML documents

A well formed XML document is any XML document which follows the rules described in the
previous section. However this is not sufficient in some cases. Inside an XML document you
can have any XML tag you can imagine. This is not harmful to XML itself but makes it
impossible to process such a document with a computer program and makes it very hard to
maintain the program to keep it synchronised with all the new tags users invent. For a well
formed XML document is not possible to check or validate that the document contains only
the tags which make sense or have valid content. For that purpose there exists a notation
called Document Type Definition (DTD) which comes from SGML world. This notation
permits the definition of a grammar (a valid set of tags, their contents and attributes) which
allows then to perform the validation of XML documents, i.e. whether the document contains
the XML tags which belong to the set of tags defined by its associated DTD. In addition, the
validating application can check whether the tags contain only allowed tags or text data, and
whether the tags use only attributes defined for them by the DTD. The validation process can
can also perform normalization of attributes, i.e. assign default values to attributes that the
user has omitted because they are described as optional or with a fixed value in the DTD.

Important note: the default behaviour of the validating application, recommended by the
XML standard, is to stop parsing of an XML document in case of an error. This is because the
XML files describe data and an error in XML means corrupted data.

Listing 17 XML elements syntax and proper vs. invalid nesting

<?xml version=’1.0’ encoding=’UTF-8’ standalone=’yes’?>
<!-- Root tag is top level root element of XML file -->
<Root>

<!-- Elements which are empty -->
<EmptyElement />
<EmptyWithAttributes attr1=”first” attr2=’second’ />
<!-- Elements having content model -->
<ProperNesting> <Something>In</Something> </ProperNesting>
<WRONGNESTING> <BADTHING>huhu </WRONGNESTING> </BADTHING>

</Root>
 page 71

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
8.5.2 Working with the persistent detector description in XML

In this section we describe how to create or update the XML data files used by the detector
description database. We will go through all available XML elements defined for the detector
description, explain their XML syntax and show how to use them. For convenience we have
included pseudo UML diagrams showing content model definitions of the XML tags. This
approach has been chosen because it is easier to understand the graphical form than raw DTD
definitions. Here follows a brief explanation how to read these pseudo UML diagrams:

• Elements are represented as boxes containing their name and, optionally, the
specification of their content (above the name, inside << >> brackets) which can be
EMPTY or ANY.

• The directed arrows are used to describe the containment relation. The containing
element has the diamond of an arrow attached to it and the contained element is at
the pointed end of the arrow. A multiplicity (see Table 8) is specified at the end of the
arrow to say how many of the elements can be placed inside the parent element. This
is very important for validation purposes.

• The OR keyword in the diagram means that the element may or may not contain the
child elements connected to it by arrows. If the keyword is missing in the diagram
then the sequence of the child elements (from left to right) is assumed and
multiplicity can play important role in this context.

• Attributes of elements are shown as data members, with their type specified and
optionally a valid or default values. The type can be any of the types shown in the
Table 9. This is not the complete list of attribute types available, just those used by the
detector description.

• The DTD also specifies whether the attribute is optional, required or has fixed or
default value. This information is not shown in the diagrams and the user has to look
at the concrete DTD file in order to get this information.

Table 8 Multiplicity used in the content model definitions

Diagram notation DTD notation Description

1 Exactly one

0..1 ? Optional, one or zero

1..* + One or more

0..* * Zero or more

Table 9 Attribute types

Type Description

ID Unique identifier

IDREF Reference to a unique identifier

ENUM Enumeration type

CDATA Character data (string)
page 72

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
8.5.2.1 Defining the top level structure

To fulfil the XML basic rule that each XML document must have only the one root XML
element we have defined the element DDDB, see Figure 11.

This element must be present in each of the XML files created for the detector description.
This element is so defined that it can contain all the important elements needed for detector
description and thus the database can be spread over multiple XML files. The DDDB element
can contain one or more of the following elements: catalog, catalogref, detelem,
logvol, material. Each of these elements will be described in detail later

The detector description in XML requires a bootstrap file which contains a definition of the
database root and a definition of the top level catalogs mentioned above. This done in a
flexible way to make it possible to have multiple bootstrap files. This can be done in the job
options by setting the application manager properties DetDbLocation and
DetDbRootName. They allow to switch from one bootstrap file to another and to switch
between root nodes. The bootstrap file must have defined the root node catalog as the only
child of the DDDB element. Inside the root node catalog the top level catalogs can be defined
according to the required content. See the Listing 18 for an example.

Figure 11 Content model definition of the root element for detector description

Listing 18 Example of a boostrap file for the detector description

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DDDB SYSTEM "xmldb.dtd">
<DDDB>

<catalog classID="3" name="dd">
<catalogref href="catalogs.xml#Structure" />
<catalogref classID="3" href="catalogs.xml#Materials" />
<catalog name="Geometry">

<logvolref href="geometry.xml#lvLHCb" />
<logvolref href="geometry.xml#lvVertex" />
<logvolref href="geometry.xml#lvVStation" />

</catalog>
</catalog>

</DDDB>

���������	

��
����

�������
�IURP�6WUXFWXUH�

��������
�IURP�0DWHULDOV�

�������

����

��

������
�IURP�*HRPHWU\�

����

��

�� ��

��
����

����
����

����
 page 73

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
In the example, the root nodes catalog /dd and its three top level catalogs for logical detector
description, geometry and materials are defined. Note that some of the catalog and catalogref
tags have not specified the classID attribute. This shows how the validation can reduce the
amount of the text in XML because these values are automatically included after the
document has been validated against the DTD file xmldb.dtd specified in the DOCTYPE
section.

The catalog and catalogrefs are used as bookshelves or references to bookshelves respectively
to achieve a possibility to split the XML database into logical partitions. The catalogref
element acts as forward reference saying where to find the given catalog definition. This tag is
one of the XML references defined for the detector description. All of them have almost the
same usage and syntax. The common things they have are attributes for class ID and
hyperlink reference. The difference is the value of the class ID of the objects they point to, also
some of them may contain other elements. The hyperlink is in general specified using the
format:

protocol1://hostname/path/to/the/file.xml#ObjectID or #ObjectID

The protocol and hostname parts can be omitted if the file resides on the local host. It is
possible to write a hyperlink without the full path name in case one needs to refer to an XML
object residing inside another file. In this case the relative path will be appended to the
location of the currently parsed XML file.

For example having the current file location /full/path/to/current.xml and inside this
file a hyperlink as href=”next/file.xml#NextOID” the hyperlink will be resolved as
/full/path/to/next/file.xml#NextOID.

If the hyperlink has the form #ObjectID this means that the referred object is located in the
same file. For content model definitions of the catalog and catalogref elements see Figure 12

1. The current implementation supports only file:// protocol, this is due to limited support in the XML4C
library from IBM
page 74

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
8.5.2.2 Defining detector elements

Figure 13 shows the content model definition of the detelem element and its child elements.

Figure 12 Content model definition of the catalog and catalogref elements

���������	
���������� �!�! �"�#
$��	��� �!�!

��
����

�������

�������� ������ ���������	

��
����

����������	

�������
%��������
���������� �!�!�"�#

��������	

��
������

�� �� �� ��

��

��

����

����

����

���� ����
����

����

����

Figure 13 Content model definition of the detelem element

���� �� ��

25

�3&'7

GHWHOHPUHI

FODVV,'���&'7� ��
KUHI���&'7

��(037<!!

VSHFLILF

��$1<!!DXWKRU YHUVLRQ

USDWK

YDOXH���&'7

��(037<!!

QSDWK

QDPH���&'7

��(037<!!

GHWHOHP

QDPH���,'
FODVV,'���&'7� ��

���
���

��

VXSSRUW

QDPH� ��&'7

�� ��

JHRPHWU\LQ IR

��(037<!!

��

OYQDPH

QDPH� ��&'7

��(037<!!

���� ����
JHRPHWU\LQIR�FDQ�
���EH�HPSW\���JKRVW��

���FRQWDLQ�RQO\�ORJ��YRO��QDPH
���FRQWDLQ�ORJ��YRO��QDPH���VXSSRUW�LQIR
 page 75

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
The detelem element has a sequence of tags which must appear in the same order shown on
the diagram (author, version, geometryinfo, detelemref, specific). The child elements author,
detelemref and specific are optional so if they are not present the content is still valid.
The #PCDATA stands for “parsed character data” which is text1.

Listing 19 shows the XML definition of the Vertex detector containing the author of this
definition, the version, geometry information about the associated logical volume and two
sub detectors of the LHCb detector.

The example shows that the definition of the sub detectors can be found in vertex.xml. The
standard class ID for detector element is 2, but in the example the class ID of the
VertexStation sub-detectors is set to 9999 which means that this sub-detector is
customized by the user and contains specific information. How to customize detector
elements will be described in section 8.5.3.

The geometryinfo element definition says that the Vertex detector has an associated logical
volume with the given name on the transient store. The logical volume should be defined
somewhere else in the XML and is retrieved automatically when the user asks for it via the
IGeometryInterface returned by the geometry() accessor method. There two more tags
in the geometryinfo definition. They are supporting detector element and its replica path.
The supporting detector element is one of the parent detector elements sitting on the same
branch in the logical detector description hierarchy. It can be a direct parent or a detector
element 3 levels up. Its role is to help in finding of physical volume location in the geometry
hierarchy for the detector element which is referring to it. The replica path is a sequence of
numbers which is used by the algorithm looking for the physical volume location in the
geometry hierarchy. This sequence is composed of the number of daughter volume IDs which
must be followed from a logical volume of supporting detector elements down through the
hierarchy. If it is in numeric form (rpath) then it must start counting from 0. If it is in the
literal form (npath) it can be a text label but it must be unique inside the mother logical
volume where it is defined and used. This label is internally converted into its proper numeric
equivalent at run-time.

1. Text format of #PCDATA content in XML is verbatim so all white space characters are preserved

Listing 19 Example of a detector element definition in XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DDDB SYSTEM "xmldb.dtd">
<DDDB>

<detelem classID="2" name="Vertex" type="passive">
<author>Author Name</author>
<version>0.1</version>
<geometryinfo>

<lvname name="/dd/Geometry/lvVertex"/>
<support name="/dd/Structure/LHCb">

<npath value="pvVertex"/>
</support>

</geometryinfo>
<detelemref classID="9999" href="vertex.xml#VertexStation01"/>
<detelemref classID="9999" href="vertex.xml#VertexStation02"/>

</detelem>
</DDDB>
page 76

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
Finally, the specific child element can have anything inside its content and is provided to
allow customizing of the detector elements. Users can define their own XML tags which
describe very specific features or characteristics of the detector. The customizing of detector
elements is described in section 8.5.3.

8.5.2.3 Defining logical volumes

To define a logical volume in XML the logvol element is used, see Figure 14.

The complete logical volume definition includes the name of the logical volume, its material,
its class ID (may be omitted, because the DTD defines its fixed value), its solid (shape) and list
of daughter volumes represented by physical volumes or parametric physical volumes. The
content model definitions of physical and parametric physical volumes is shown in Figure 15
and Figure 16. The diagram in Figure 14 shows all attributes for solids. Figure 17 and
Listing 21 show how to define solids. Listing 20 shows an example of a logical volume in
XML.

Figure 14 Content model definition of logvol element

Figure 15 Content model definition for physical volume element.

25
25

25

25

25

2525

SK\VYRO

QDPH�� �,'

ORJYR O���&'7

ER[

QDPH���,'

VL]H;���&'7

VL]H<���&'7

VL]H=���&'7

FRQV

QDPH���,'

VL]H=���&'7

RXWHU5DGLXV3=���&'7

LQQHU5DGLXV3=���&'7

VWDUW3KL$QJOH���&'$7$

RXWHU5DGLXV0=���&'7

LQQHU5DGLXV0=���&'7

GHOWD3KL$QJOH���&'$7$

WUG

QDPH�� �,'

VL]H=�� �&'7

VL]H;����&'7

VL]H;����&'7

VL]H<����&'7

VL]H<����&'7

WXEV

QDPH���,'

VL]H= �� �&'7

VWDUW3KL$QJ OH���& '$7$

GHOWD3KL$QJOH�� �&'$ 7$

RX WHU5DGLXV�� �&'$ 7$

LQQHU5DGLXV���&'7

VSKHUH

QDPH���,'

VL]H=���&'7

RXWHU5DGLXV���&'7

LQQHU5DGLXV���&'7

VWDUW3KL$QJOH���&'$7$

GHOWD3KL$QJOH���&'$7$

VWDUW7KHWD$QJOH���&'$7$

GHOWD7KHWD$QJOH���&'$7$

XQLRQ

QDPH���,'

VXEWUDFWLRQ

QDPH���,'

LQWHUVHFWLRQ

QDPH���,'

ORJYRO

QDPH���,'

FODVV,'���&'7� �����

PDWHULDO���&'7

���
���

��
�� ��

�� ��

��

��

��

SDUDPSK\VYRO

QXPEHU�� �&'7���
���

25

25

SRV; <=

[�� �&'7
\�� �&'7
]�� �&'7

��(037<! !

SRV53KL=

U�� �&'7
SKL�� �&'7
]�� �&'7

��(037<!!

SRV57 K3KL

U�� �&'7
WKH WD �� �&'$ 7$
SKL� �� &'7

��(037<!!
URW; <=

URW; � ��&'7
URW< �� � &'7
URW= �� � &'7

��(037<!!

SK\VYRO

QDP H�� �,'
ORJYR O�� �&'7

��

�� ��
��

URW$ [LV

D[7 KH WD �� �&'7
D[3KL�� �&'7
DQJOH �� �&'7

��(037<!!��25

SK\VYR O� FDQ�FRQWD LQ� H LW KHU �SRV L WLRQ� RQO\�RU �SRV LW LRQ �DQG� UR W D WL RQ�WRJH WKH U�
UR WD WL RQ�Z L WKRX W�S RV LWLRQ�P DNHV �QR� VHQVH �
 page 77

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
The example shows two logical volumes lvLHCb and lvVertex. The former volume is made
of the material Vacuum and its solid is defined as a box with dimensions 50 x 50 x 60 meters.
Then it has ascribed one daughter volume lvVertex positioned inside the lvLHCb volume
without rotation and shifted along the z-axis by 200 millimetres. The lvVertex volume is
made of material Silicon and its shape is defined by the solid tubs (cylinder) and has one
parametric physical volume which places 6 daughter volumes of lvVStation.

The initial position of the first daughter volume is placed 200 millimeters backwards along
the Z axis relative to the center ofthe lvVertex mother volume. The remaining daughter

Figure 16 Content model definition for parametric physical volume element.

Listing 20 Example of a logical volume definition in XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DDDB SYSTEM "xmldb.dtd">
<DDDB>

<logvol name="lvLHCb" material="Vacuum">
<box name="caveBox" sizeX="50*&m;" sizeY="50*&m;" sizeZ="60*&m;"/>
<physvol name="VertexSubsystem" logvol="/dd/Geometry/lvVertex"/>

<posXYZ x=’0*&mm;’ y=’0*&mm;’ z=’200*&mm;’/>
</physvol>

</logvol>
<logvol name="lvVertex" material="Silicon">
<tubs name="vertexTubs" sizeZ="6*&m;"

innerRadius="0*&mm;" outerRadius="20*&mm;"
startPhiAngle="0*°ree;" deltaPhiAngle="360*°ree;"/>

<paramphysvol number=’6’ >
<physvol name="pvStation" logvol="/dd/Geometry/lvVStation"/>

<posXYZ x=’0*&mm;’ y=’0*&mm;’ z=’-200*&mm;’/>
</physvol>
<posXYZ x=’0*&mm;’ y=’0*&mm;’ z=’50*&mm;’/>
<rotXYZ rotX=’0*&mm;’ rotY=’0*&mm;’ rotZ=’0*&mm;’/>

</paramphysvol>
</logvol>

</DDDB>

�

SK\VYRO

Q DPH� �� ,'
ORJY RO� �� &'7

SRV;<=

[���&'7
\���&'7
]���&'7

��(037<!!

SRV53KL =

U���&'7
SKL���&'7
]�� �&'7

��(037<!!
SRV57K3KL

U�� �&'7
WKH WD ���&'7
SKL�� �&'7

��(037<!! URW; <=

U RW; � �� &'7
U RW<�� � &'7
U RW=�� � &'7

��(037<!!

URW$[LV

D [7KHWD ���&'7
D[3KL���&'7
DQJOH �� �&'7

��(037<!!

SDUDPSK\VYRO

QXP EHU ���&'7��

�
�� ��

��

��

25 25

25

SDUDP SK\V YRO�P XVW� FRQWD LQ �RQH� SK\V YRO� �L QLWLD O� SRVL WL RQ� �DQG� WKH Q�RQH� RI� WK H �SRV LWLRQV �DQG� RQH
RI� WKH� URWD WL RQV� IR U�W UDQV IRU P DW LRQ �VWHS
page 78

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
volumes are then shifted by 50 millimeters along Z axis one by one relative to the previous
one without rotation.

Simple solids

Simple solids are based on the concept of Constructive Solid Geometry (CSG). This concept
is nothing new, it has been used already by GEANT3 and GEANT4 and by the other
frameworks. There are defined the solids of the basic 3D volumes such as sphere, box,
cylinder, conus, toroid...

The solid definition is fundamental property of a logical volume object and thus is needed to
capture this information inside XML as well. For that purpose there are defined the XML tags
for the solids of the basic 3D volumes such as sphere, box, cylinder, conus, toroid... The
diagram on the Figure 17 shows content model definition of the simple solids. The example of
XML is shown in the Listing 21. Very important is that simple solids can’t contain position
and rotation definitions in the context of logical volume. When used inside logical volume the
transformation makes no sense. On the other hand when used in the context of boolean solids
the transformation tags are needed in order to specify the position of the solids according to
each other.

Figure 17 Content model definition of the box XML element (applies to all simple solids).

SRV; <=

[�� �&'7

\�� �&'7

]�� �&'7

��(037<!!

SRV53KL=

U�� �&'7

SKL�� �&'7

]�� �&'7

��(037<!!

SRV57K3KL

U �� �&'7

WKHWD �� �&'7

SKL�� �&'7

��(037<!!

URW; <=

URW; �� �&'7

URW<�� �&'7

URW=�� �&'7

��(037<!!

ER[

QDP H�� �,'

V L]H; �� �&'7

V L]H<�� �&'7

V L]H=�� �&'7

�

�
�

URW$ [LV

D[7 KHWD �� �&'7

D[3KL�� �&'7

DQJ OH �� �&'7

��(037<!!
25

25

25

�

�
�

����

����
 page 79

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
Boolean solids

The current implementation allows to create boolean solids as a union, intersection or
subtraction of several simple solids. Content model is shown on the Figure 18

The user has to start with the so called main solid and all the other solids participating in the
boolean solid are positioned relative to the main solid. In this context the position and rotation
attributes of solids are applied together with their dimensions attributes. Listing 21 show how
to create a simple union of solids.

The example shows the union of two boxes where the first one is the main solid and the
second one is positioned just next to the main solid along the z-axis.

Figure 18 Content model definition of a union boolean solid (applies to all boolean solids).

Listing 21 Example of boolean solid in XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DDDB SYSTEM "xmldb.dtd">
<DDDB>

<logvol name="lvSampleBoolean" material="Vacuum">
<union name="BoxUnion">

<box name="MainBox" sizeX="10*&mm;" sizeY="10*&mm;" sizeZ="10*&mm;">
<posXYZ x=’0*&mm;’ y=’0*&mm;’ z=’-5*&mm;’/>

</box>
<box name="Box2" sizeX="10*&mm;" sizeY="10*&mm;" sizeZ="10*&mm;">

<posXYZ x=’0*&mm;’ y=’0*&mm;’ z=’10*&mm;’/>
</box>

</union>
</logvol>

</DDDB>

WUG

QDPH���,'
VL]H=���& '$ 7$
VL]H;����& '$ 7$
VL]H;����& '$ 7$
VL]H<����& '$ 7$

VL]H<����& '$ 7$

WXEV

QDPH���,'
VL]H=���& '$ 7$
VWDUW3 KL$ QJOH���& '$ 7$
GHOWD3 KL$ QJOH���& '$ 7$
RXWHU5DGLXV���& '$ 7$

LQQHU5DGLXV���& '$ 7$

ER[

QDPH���,'
VL]H;���& '$ 7$
VL]H<���& '$ 7$
VL]H=���& '$ 7$

VSKHUH

QDPH���,'
VL]H=���& '$ 7$
RXWHU5DGLXV���& '$ 7$
LQQHU5DGLXV���& '$ 7$
VWDUW3 KL$ QJOH���& '$ 7$
GHOWD3 KL$ QJOH���& '$ 7$

VWDUW7KHWD$ QJOH���& '$ 7$
GHOWD7KHWD$ QJOH���& '$ 7$

XQLRQ

QDPH���,'

FRQ V

QDPH���,'
VL]H=���& '$ 7$
RXWHU5DGLXV3 =���& '$ 7$
LQQHU5DGLXV3 =���& '$ 7$
VWDUW3 KL$ QJOH���& '$ 7$
RXWHU5DGLXV0 =���& '$ 7$
LQQHU5DGLXV0 =���& '$ 7$

GHOWD3 KL$ QJOH���& '$ 7$

�� �

���
���
���

���

page 80

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
8.5.2.4 Defining material

Material is another important attribute of the logical volumes. Materials can be defined as
isotopes, elements or mixtures.Elements can be optionally composed of isotopes. Mixtures

can be composed of elements or of other mixtures. Composition of elements is done always by
specifying the fraction of the mass for each of the isotopes of the element. For a mixture the
user can specify either composition by number of atoms of by fraction of the mass for each of
the elements or mixtures. The listing shows how to define a material in XML. It is not allowed
to mix composition by fraction of the mass and by atoms inside the same definition of a
mixture.

Figure 19 Content model definition of material element

Listing 22 Example of a material in XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DDDB SYSTEM "xmldb.dtd">
<DDDB>

<material name="Argon_CF_4_CO_2" classID="&mixture;">
<density>2.14160E-3*&g;/&cm3;</density>
<materialref classID="&element;" href="#Argon">

<fraction> <mass n="0.3"/> </fraction>
</materialref>
<materialref classID="&mixture;" href="#CF_4">

<fraction> <mass n="0.2"/> </fraction>
</materialref>
<materialref classID="&mixture;" href="#CO_2">

<fraction> <mass n="0.5"/> </fraction>
</materialref>

</material>
</DDDB>

�3&'$ 7$

D

]

Q

GHQVLW\ [� ODPEGD

PDWHULDO

FODVV,'���(180� ������_����_�����
QDPH���,'
WHPSHUDWXUH���& '$ 7$
SUHVVXUH���& '$ 7$
VWDWH���(180� ��VROLG_OLTXLG_JDV�

��

PDWHULDOUHI

KUHI���& '$ 7$
FODVV,'���(180� ������_����_�����

���
���

DWRPV

Q���&'$ 7$

��(037<!!

IUDFWLRQ

��

PDVV

Q���&'$ 7$

��(037<!!

��
25

����

��������

����

����
 page 81

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
8.5.3 Customizing a detector element

The specific detector description can be made available to algorithms by customizing the
generic detector element. Customizing is done by inheriting the specific detector class from
the generic DetectorElement. The sub-detector specialist can provide specific answers to
algorithms based on a combination of common parameters (general geometry, material etc.)
and some specific parameters. For example, an algorithm may want to know what are the
coordinates in the local system of reference of a given cell or wire number. The specialist can
“code” the answer by using a minimal number of parameters specific to the detector
structure.

Step 1: Define your detector element type

This means to provide C++ definition of your specific detector module as shown on the
Listing 23 providing that the actual implementation of all the methods is done inside
MyDetector.cpp file.

At first the user must obtain the unique class ID for his/her own detector element type. The
class ID is needed for conversion service and the corresponding converter. The methods
returning the class ID must be supplied exactly as shown in the example.

The example shows further that the new detector element type will have its specific data, e.g.
detector cell size. For this information we will create a user defined XML tag inside the
<specific> section of detector element XML tag, see the next step.

Listing 23 The C++ definition of the user defined detector element type MyDetector.

#include "Gaudi/DetectorDataSvc/DetectorElement.h"

extern const CLID& CLID_MyDetector;

class MyDetector: public DetectorElement {
public:

double cellSize(x,y);
void setCellSize(double size);

double AlPlateThickness();
void setAlPlateThickness(double thick);

inline const CLID& clID() { return MyDetector::classID(); }
static const CLID& classID(){ return CLID_MyDetector; }

private:

double m_cellSize;
double m_AlPlateThickness;

};
page 82

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
Step 2: Define your detector element in XML

In this step is needed to define all the new XML tags for the detector element specific data that
the user wants to access from XML data file. The definition of the new XML tags is done
inside, so called, local DTD section. This is needed for the validation purpose. Having that
definition the XML parser is then able check whether the syntax of the user defined XML tags
is valid or not. The next step is to provide an information about geometry. Actually not full
geometry description is done here, only the association is created telling the converter where
to look for full geometrical information about this detector element. How to define geometry
is shown at the next step. And finally the user has to define sub detectors or sub modules if
any. Example of XML definition of MyDetector element type is shown in the Listing 24.

In the piece of XML shown above are defined 2 new XML tags AluminiumPlateThickness
and CellSize. They are the used inside the <specific> section filled with the concrete data.

The CellSize tag is defined as an empty tag with one attribute “n”. The tag
AluminiumPlateThickness has no attribute but has its content. In the step 4 we will show how
properly retrieve information out if these tags by methods of a user defined XML converter.

Listing 24 XML definition of MyDetector element type.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DDDB SYSTEM "xmldb.dtd" [
<!-- MyDetector cell size -->
<!ELEMENT CellSize EMPTY>
<!ATTLIST CellSize n CDATA #REQUIRED>
<!-- Thickness of the Aluminum plates -->
<!ELEMENT AluminiumPlateThickness (#PCDATA)>
]>
<DDDB>

<detelem classID="7001" name="MyDetectorModule">
<author>RCH</author>
<version>0.1</version>
<geometryinfo>

<lvname name = "/dd/Geometry/MyDetector/lvMyDetector" />
<support name = "/dd/Structure/LHCb">

<npath value = "MDM_0" />
</support>

</geometryinfo>
<detelemref classID="7002" href=’mysubmodule.xml#MySubModule01’/>
<detelemref classID="7002" href=’mysubmodule.xml#MySubModule02’/>
<detelemref ="7003" href=’anothermodule.xml#AnotherSubModule’/>
<specific>

<CellSize n="56.7*&cm;" />
<AluminiumPlateThickness>

4.53*&mm;
</AluminiumPlateThickness>

</specific>
</detelem>

</DDDB>
 page 83

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
Step 3: Define the geometry of your detector element.

In the previous step the association to the geometry has defined, but the actual geometry does
not exist yet. This step will fill the gap by providing all the needed information in XML.

First we define the catalog of all the logical volumes of MyDetector.This catalog is accessible
at run-time as /dd/Geometry/MyDetector. Such a catalog allows modification of the XML
detector description database by many people in parallel, because all the changes to the
geometry structure inside this catalog can be kept local to this catalog without affecting the
other subdetectors. It also makes the structure on the transient store more clear and similar to
the logical structure of the detector. The catalog contains only references to logical volumes
defined in the same file.

Next we have defined the logical volume for our MyDetector element with its shape as box
and 3 daughter volumes. The first two daughter volumes are represented by parametric
physical volume and the third one by normal physical volume.

In this file are missing definition for the remaining two logical volumes, but these are defined
in a similar way as the one shown above.

Listing 25 XML definition of the geometry for the MyDetector element type.

<?xml version="1.0"?>
<!DOCTYPE DDDB SYSTEM "xmldb.dtd">
<DDDB>

<catalog name="MyDetector">
<logvolref href="#lvMyDe" />
<logvolref href="#lvMyDeSubMod" />
<logvolref href="#lvMyDeAnotherMod" />

</catalog>

<logvol name="lvMyDe" material="Vacuum">
<box name="lvMyDeBox" sizeZ="0.8*&m;" sizeY="10*&m;" sizeX="10*&m;"/>

<paramphysvol number="2">
<physvol name="ppvMySM" logvol="/dd/Geometry/MyDetector/lvMyDeSubMod">
<posXYZ x="0*&mm;" y="0*&mm;" z="-300*&mm;"/>
</physvol>
<posXYZ x="0*&mm;" y="0*&mm;" z="100*&mm;"/>
<rotXYZ rotX="0*°ree;" rotY="0*°ree;" rotZ="90*°ree;"/>

</paramphysvol>

<physvol name="pvMyAnotherSM"
logvol="/dd/Geometry/MyDetector/lvMyDeAnotherMod">

<posXYZ x="0*&mm;" y="0*&mm;" z="200*&mm;" />
</physvol>

</logvol>
</DDDB>
page 84

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
Step 4: Write the XML converter for your detector element.

As a first step we need to create instance of the user level XML converter for MyDetector
element type. This done by inheritance from XmlUserDeCnv<> templated class which is
parametrized by our MyDetector element type, see Listing 26..

What is important here is to define the corresponding converter factory otherwise this
converter will not be invoked.

As the next step is actual implementation of the callbacks of the IUserSax8BitDocHandler
interface. This interface is defined as shown on the Listing 27.

The names of the methods are self descriptive but two of them may need more detailed
explanation. The methods uIgnorableWhitespace and uCharacters are called for #PCDATA
contents of an XML tag. The reason why there are two methods instead of one is that XML

Listing 26 Making an instance of user defined XML converter for MyDetector element type.

#include "DetDesc/XmlCnvSvc/XmlUserDeCnv.h"
#include "MyDetector.h"

class XmlMyDetectorCnv : public XmlUserDeCnv<MyDetector> {
public:

XmlMyDetectorCnv(ISvcLocator* svc);
~XmlMyDetectorCnv() {}
virtual void uStartElement(const char* const name,

XmlCnvAttributeList& attributes);
virtual void uEndElement(char* const name);
virtual void uCharacters(const char* const chars,

const unsigned int length);
virtual void uIgnorableWhitespace(const char* const chars,

const unsigned int length);
};

static CnvFactory<XmlMyDetectorCnv> myde_factory;
const ICnvFactory& XmlMyDetectorCnvFactory = myde_factory;

XmlMyDetectorCnv::XmlMyDetectorCnv(ISvcLocator* svc)
: XmlUserDeCnv<MyDetector>(svc, "XmlMyDetectorCnv")
{}

Listing 27 IUserSax8BitDocHandler interface methods

virtual void uStartDocument() = 0;
virtual void uEndDocument() = 0;
virtual void uCharacters(const char* const chars,

const unsigned int length) = 0;
virtual void uIgnorableWhitespace(const char* const chars,

const unsigned int length) = 0;
virtual void uStartElement(const char* const name,

XmlCnvAttributeList& attributes) = 0;
virtual void uEndElement(const char* const name) = 0;
 page 85

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
specification says that white characters inside XML documents are preserved and the decision
is left up to the application which should either ignore them or process them.

Let’s move back to writing our XML converter. The uStartElement is called always when
XML parser jumps onto the next XML tag inside the <specific> section. In the Listing 28 is
shown the implementation of this callback.

There is a clear action there for the tag CellSize. We get the value of the attribute “n” by name
and we evaluate its content by numerical expressions parser with checking for CLHEP units
enabled and finally we set the m_cellSize property of our detector element.

For the tag AluminiumPlateThickness, however, we can’t do much at this this time because
its content has not been parsed yet. What we do here is initialization of the static variable used
to collect all of the characters inside the content of the AluminiumPlateThickness tag.

The Listing 29 shows how we process #PCDATA content of our XML tag by collecting all of
the characters and inside the uEndElement callback we finally evaluate the string expression
we have collected and set the corresponding property of our detector element.

Listing 28 Implementation of the callback invoked at start of each XML tag inside <specific> section.

static std::string s_collector;

void XmlMyDetectorCnv::uStartElement(const char* const name,
XmlCnvAttributeList& attributes) {

std::string tagName(name);
if(tagName == "CellSize") {
std::string nval = attributes.getValue("n");
m_dataObj->setCellSize(xmlSvc()->eval(nval));

} else if(tagName == “AluminiumPlateThickness”) {
s_collector.erase();

} else {// Unknown tag, a warning message can be issued here}
}

Listing 29 Implementation of callbacks needed to process content model based XML tag.

void XmlMyDetectorCnv::uCharacters(const char* const chars,
const unsigned int length) {

s_collector += chars;
}

void XmlMyDetectorCnv::uIgnorableWhitespace(const char* const chars,
const unsigned int length) {

s_collector += chars;
}

void XmlMyDetectorCnv::uEndElement(const char* const name) {
std::string tagName(name);
if(tagName == “AluminiumPlateThickness”) {
m_dataObj->setAluminiumPlateThickness(xmlSvc()->eval(s_collector));

}
}

page 86

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
8.5.4 CLHEP units

Since Gaudi release 4, all of the packages have been made CLHEP units aware. The detector
description package handles and assumes CLHEP units internally wherever they are used.
The implication of this approach is that the user of the Gaudi framework must use units as
well in his/her code otherwise the correct results are not guaranteed. The persistency for
detector description based on XML is aware of CLHEP units as well. The use of units inside
XML data files is possible due to the numerical expressions parser described section 8.5.5.
This allows the user use units he/she is used to work with. May be is good to mention the list
of a few units used by detector description:

8.5.5 Numerical expressions parser

This is a simple parser for evaluation of numerical expressions. It is available for Gaudi
framework converters as well as for the user defined converters. The only difference is that in
user defined converters the parser is not instantiated explicitly by the user but is accessed
through IXmlSvc interface instead, see Listing 29 for example of its use.

The numerical expressions recognized by the parser can be composed of integers and floating
point numbers assuming one of the formats:

100 100. .05 0.1 1.34-e12 -23

Supported operations are: + - * / unary +|- exponent ^

Parenthesized expressions: 1.4 * (23.4-e12 / 1.8)

Operator precedence is: () unary +|- ^ *|/ +|-

The result is always evaluated to double value. The check for presence of CLHEP units inside
the expressions is enabled by default. To suppress this behavior the call of the eval()
method must look like:

xmlSvc->eval(“2*(34.5 + 1.23-e4)“, false);

Table 10 List of CLHEP units used by detector description in Gaudi

Value Default unit

length milimetre

angle radian

density[ρ] gram/centimetre3

radiation length[X0] centimetre

absorption length[λ] centimetre

A gram/mole

weight gram
 page 87

GAUDI User Guide
Chapter 8 Detector Description Version/Issue: 5/1
page 88

GAUDI User Guide
Chapter 9 Histogram facilities Version/Issue: 5/1
Chapter 9

Histogram facilities

9.1 Overview

The histogram data store is one of the data stores discussed in chapter 2. Its purpose is to store
statistics based data and user created objects that have a lifetime of more than a single event
(e.g. histograms).

As with the other data stores, all access to data is via a service interface. In this case it is via the
IHistogramSvc interface, which is derived from the IDataProviderSvc interface
discussed in chapter 6. The user asks the Histogram Service to book a histogram and register
it in the histogram data store. The service returns a pointer to the histogram, which can then
be used to fill and manipulate the histogram

The histograms themselves are booked and manipulated using four interfaces as defined by
the AIDA (Abstract Interfaces for Data Analysis) project. These interfaces are documented on
the AIDA web pages: http://wwwinfo.cern.ch/asd/lhc++/AIDA/index.html.The GAUDI
implementation uses the transient part of HTL (Histogram Template Library), provided by
LHC++.

The histogram data model is shown in Figure 20. The interface IHistogram is a base class,
which is used for management purposes. It is not a complete histogram interface, it should
not be used by the users. Both interfaces IHistogram1D and IHistogram2D are derived
from IHistogram, and use by reference the IAxis interface. Users can book their 1D or 2D
histograms in the histogram data store in the same type of tree structure as the event data.
Concrete 1D and 2D histograms derive from the DataObject in order to be storable
 page 89

http://wwwinfo.cern.ch/asd/lhc++/AIDA/index.html

GAUDI User Guide
Chapter 9 Histogram facilities Version/Issue: 5/1
.

9.2 The Histogram service.

An instance of the histogram data service is created by the application manager. After the
service has been initialised, the histogram data store will contain a root directory “/stat” in
which users may book histograms and/or create sub-directories (for example, in the code
fragment below, the histogram is stored in the subdirectory “/stat/simple“). A suggested
naming convention for the sub-directories is given in Section 1.2.3.

As discussed in section 5.2, the Algorithm base class defines a member function

Figure 20 Histograms data model.

H is to g ram s

H 1D

H 1 D V ar

H 2 DH 1 D an d H 1D V a r a re c u rr e n t ly
the on ly t w o i m p lem ented
s p ec ia liz at io ns of G enH is to 1D

H 2 D is c u rren t ly the on ly one
im p lem ented s p ec ia liz a t io n o f
G en H is to 2D

D ata O b jec t

IH is tog ram 1 D IH is tog ram 2D

IH is to gra m

IA xi s

TY P E 1 D

TY P E
1 D

G enH is to 1D

1

1

1

1

TY P E 2 DA x is
1

1

1

1

TY P E
2 D

G enH is to 2D

1

1

1

1

2

1

2

1

IHistogramSvc* histoSvc()
page 90

GAUDI User Guide
Chapter 9 Histogram facilities Version/Issue: 5/1
which returns a pointer to the IHistogramSvc interface of the standard histogram data
service. Access to any other non-standard histogram data service (if one exists) must be
sought via the ISvcLocator interface of the application manager as discussed in section 11.2
of Chapter 11.

9.3 Using histograms and the histogram service

An example code fragment illustrating how to book a 1D histogram and place it in a directory
within the histogram data store, and a simple statement which fills that histogram is shown
here:

The parameters of the book function are the directory in which to store the histogram in the
data store, the histogram identifier, the histogram title, the number of bins and the lower and
upper limits of the X axis. 1D histograms with fixed and variable binning are available. In the
case of 2D histograms, the book method requires in addition the number of bins and lower
and upper limits of the Y axis.

In the current implementation, the histogram identifier should be a valid HBOOK histogram
identifier (number), must be unique and, in particular, must be different from any n-tuple
number. These limitations are imposed by the fact that Gaudi is currently using HBOOK for
histogram and n-tuple persistency.

The call to histoSvc()->book(...) returns a pointer to an object of type IHistogram1D
(or IHistogram2D in the case of a 2D histogram). All the methods of this interface can be
used to further manipulate the histogram, and in particular to fill it, as shown in the example.
Note that this pointer is guaranteed to be non-null, the algorithm would have failed the
initialisation step if the histogram data service could not be found. On the contrary the user
variable particles may be null (in case of absence of Monte Carlo particles in the transient
data store and in the persistent storage), and the fill statement would fail - so the value of
particles must be checked before using it.

Algorithms which create histograms will in general keep pointers to those histograms, which
they may use for filling operations. However it may be that you wish to share histograms
between different algorithms. Maybe one algorithm is responsible for filling the histogram
and another algorithm is responsible for fitting it at the end of the job. In this case it may be
necessary to look for histograms within the store. The mechanism for doing this is identical to

// Book 1D histogram in the histogram data store
m_hTrackCount= histoSvc()->

book("/stat/simple", 1, “TrackCount“, 100, 0., 3000.);
SmartDataPtr<MCParticleVector> particles(eventSvc(),

“/Event/MC/MCParticles”)
if (0 != particles) {

// Filling the track count histogram
m_hTrackCount->fill(particles->size(), 1.);

}

 page 91

GAUDI User Guide
Chapter 9 Histogram facilities Version/Issue: 5/1
the method for locating event data objects within the event data store, namely via the
IDataProviderSvc interface, as discussed in section 6.2.

9.4 Persistent storage of histograms.

An HBOOK conversion service exists which can convert objects of types IHistogram1D and
IHistogram2D into a form suitable for storage in a standard HBOOK file. In order to be able
to save the histograms to disk it is necessary to declare the name of the output file in the job
options:

At the end of the job all the histograms in the transient histogram store will be written into
this file.

On both Linux and NT, you also need to declare in the job options file the DLL containing the
HBOOK conversion service:

SmartDataPtr<IHistogram1D> hist1D(histoSvc(), "/stat/simple/1");
if(0 != hist1D) {

// Print the found histogram
histoSvc()->print(hist1D);

}

HistogramPersistencySvc.OutputFile = "histo.hbook";

ApplicationMgr.DLLs = { "HbookCnv"}
page 92

GAUDI User Guide
Chapter 10 N-tuple facilities Version/Issue: 5/1
Chapter 10

N-tuple facilities

10.1 Overview

User data - so called n-tuples - are very similar to event data. Of course, the scope may be
different: a row of an n-tuple may correspond to a track, an event or complete runs.
Nevertheless, user data must be accessible by interactive tools such as PAW or Root.

Gaudi n-tuples allow to freely format structures. Later during the running phase of the
program data are accumulated and written to disk.

The transient image of an n-tuple is stored in a Gaudi data store which is connected to the
n-tuple service. Its purpose is to store user created objects that have a lifetime of more than a
single event.

As with the other data stores, all access to data is via a service interface. In this case it is via the
INTupleSvc interface which extends the IDataProviderSvc interface. In addition the
interface to the n-tuple service provides methods for creating n-tuples, saving the current row
of an n-tuple or retrieving n-tuples from a file. The n-tuples are derived from DataObject in
order to be storable, and are stored in the same type of tree structure as the event data. This
inheritance allows to load and locate n-tuples on the store with the same smart pointer
mechanism as is available for event data items (c.f. Chapter 6).

10.2 Access to the N-tuple Service from an Algorithm.

The Algorithm base class defines a member function

INTupleSvc* ntupleSvc()
 page 93

GAUDI User Guide
Chapter 10 N-tuple facilities Version/Issue: 5/1
which returns a pointer to the INTupleSvc interface.

The n-tuple service provides methods for the creation and manipulation of n-tuples and the
location of n-tuples within the database. The database reflects the tree structure of the n-tuple
data store. Please refer to the online documentation for a description of this interface.

The top level directory of the n-tuple data store is called “/NTUPLES”. The next directory
layer is connected to the different output streams: e.g. “/NTuples/FILE1”, where FILE1 is the
logical name of the requested output file for a given stream. There can be several output
streams connected to the service. In case of Persistency using HBOOK “FILE1” corresponds to
the top level RZ Directory of the file (...the name given to HROPEN). From then on the tree
structure is reflected with normal RZ directories.

10.3 Using the n-tuple service.

When defining an n-tuple the following steps must be performed:

• The n-tuple tags must be defined.

• The n-tuple must be booked and the tags must be declared to the n-tuple.

• The n-tuple entries have to be filled.

• The filled row of the n-tuple must be committed.

• Persistent aspects are steered by the job options.

In the following an attempt is made to explain the different steps. Please note that the n-tuple
number must be unique and, in particular, that it must be different from any histogram
number. This is a limitation imposed by the fact that Gaudi is currently using HBOOK for
histogram and n-tuple persistency.

10.3.1 Defining n-tuple tags

When creating an n-tuple it is necessary to first define the tags to be filled in the n-tuple.
Typically the tags belong to the filling algorithm and hence should be provided in the
Algorithm’s header file. Currently the following data types are supported: bool, long,
float and double. double types (Fortran REAL*8) need special attention: the n-tuple
structure must be defined in a way that aligns double types to 8 byte boundaries. In addition
PAW cannot understand double types. The code fragment below illustrates how to define
n-tuple items:

Listing 30 Definition of n-tuple tags from the Ntuples.WriteAlg.h example header file.

1: NTuple::Item<long> m_ntrk; // A scalar item (number)
2: NTuple::Array<bool> m_flag; // Vector items
3: NTuple::Array<long> m_index;
4: NTuple::Array<float> m_px, m_py, m_pz;
5: NTuple::Matrix<long> m_hits; // Two dimensional tag
page 94

GAUDI User Guide
Chapter 10 N-tuple facilities Version/Issue: 5/1
10.3.2 Booking and Declaring Tags to the N-tuple

When booking the n-tuple, the previously defined tags must be declared to the the n-tuple.
Before booking, the proper output stream (file) must be accessed and the target directory
defined.

Tags which are not declared to the n-tuple are invalid and will cause an access violation at
run-time. Later these tags can be used like ordinary numbers, arrays or matrices. However,
there is one caveat: double numbers must be 8-byte aligned, otherwise HBOOK complains.

10.3.3 Filling the N-tuple

The tags should be usable just like normal data items, where

• Items<TYPE> are the equivalent of numbers: bool, long, float.

• Array<TYPE> are equivalent to 1 dimensional arrays: bool[size], long[size],
float[size]

• Matrix<TYPE> are equivalent to an array of arrays or matrix: bool[dim1][dim2].

Listing 31 Creation of an n-tuple in a specified directory and file.

1: // Access the output file
2: NTupleFilePtr file1(ntupleSvc(), "/NTUPLES/FILE1");
3: if (file1) {
4: if (!ntupleSvc()->createDirectory("/NTUPLES/FILE1/MC")) {
5: log << MSG::ERROR << "Cannot create directory" << endreq;
6: }
7: else {
8: // First: A column wise N tuple
9: NTuplePtr nt1(ntupleSvc(), "/NTUPLES/FILE1/MC/1");

10: if (!nt) { // Check if already booked
11: nt=ntupleSvc()->book (col, 1, CLID_ColumnWiseTuple, "Hello World");
12: if (nt) {
13: // Add an index column
14: status = nt->addItem ("Ntrack", m_ntrk, 0, 5000);
15: // Add a variable size column of type float (length=length of index col)
16: status = nt->addItem ("px", m_ntrk, m_px);
17: status = nt->addItem ("py", m_ntrk, m_py);
18: status = nt->addItem ("pz", m_ntrk, m_pz);
19: // Another one, but this time of type bool
20: status = nt->addItem ("flg",m_ntrk, m_flag);
21: // Another one, type integer, numerical numbers must be within [0, 5000]
22: status = nt->addItem ("idx",m_ntrk, m_index, 0, 5000);
23: // Add 2-dim column: [0:m_ntrk][0:2]; numerical numbers within [0, 8]
24: status = nt->addItem ("hit",m_ntrk, m_hits, 2, 0, 8);
25: }
26: else { // did not manage to book the N tuple....
27: return StatusCode::FAILURE;
28: }
29: }
30: }
 page 95

GAUDI User Guide
Chapter 10 N-tuple facilities Version/Issue: 5/1
There is no implicit bounds checking possible without a rather big overhead at run-time.
Hence it is up to the user to ensure the arrays do not overflow.

When all entries are filled, the row must be committed, ie. the record of the n-tuple must be
written.

10.3.4 N-tuple Persistency

A conversion service exists which can convert NTuple objects into a form suitable for storage
in a standard HBOOK file. In order to use this facility it is necessary to add the following line
in the job options file:

where <tuples.hbook> should be replaced by the name of the file to which you wish to
write the n-tuple. FILE1 one is the logical name of the output file - it could be any other string
(Caveat: HBOOK only accepts directory names with less than 8 characters!).

The handling of row wise n-tuples does not differ. However, only individual items (class
NTuple::Item) can be filled, no arrays and no matrices. Since the persistent representation
of row wise n-tuples is done by floats only, the first row of each row wise n-tuple contains the
type information - when looking at a row wise n-tuple with PAW make sure to start at the
second event!

Listing 32 Filling an n-tuple.

31: m_ntrk = 0;
32: for(MCParticleVector::iterator i = mctracks->begin(); i !=

mctracks->end(); i++) {
33: const HepLorentzVector& mom4 = (*i)->fourMomentum();
34: m_px[m_ntrk] = mom4.px();
35: m_py[m_ntrk] = mom4.py();
36: m_pz[m_ntrk] = mom4.pz();
37: m_index[m_ntrk] = cnt;
38: m_flag[m_ntrk] = (m_ntrk%2 == 0) ? true : false;
39: m_hits[m_ntrk][0] = 0;
40: m_hits[m_ntrk][1] = 1;
41: m_ntrk++;
42: // Make sure the array(s) do not overflow.
43: if (m_ntrk > m_ntrk->range().distance()) break;
44: }
45: // Commit N tuple row.
46: status = ntupleSvc()->writeRecord("/NTUPLES/FILE1/MC/1");
47: if (!status.isSuccess()) {
48: log << MSG::ERROR << "Cannot fill id 1" << endreq;
49: }
50: }

NTupleSvc.Output = { "FILE1#<tuples.hbook>" };
// Perstency type of the N tuple service: 6=HBOOK
NTupleSvc.Type = 6;
page 96

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
Chapter 11

Framework services

11.1 Overview

Services are generally sizeable components that are setup and initialized once at the
beginning of the job by the framework and used by many algorithms as often as they are
needed. It is not desirable in general to require more than one instance of each service.
Services cannot have a “state” because there are many potential users of them so it would not
be possible to guarantee that the state is preserved in between calls.

In this chapter we give describe how services are created and accessed, and then give an
overview of the various services, other than the data access services, which are available for
use within the Gaudi framework. The Job Options service, the Message service, the Particle
Properties service, the Chrono & Stat service and the Random Numbers service are available in
this release.

We also describe how to implement new services for use within the Gaudi environment. We
look at how to code up a service, what facilities the Service base class provides and how a
service is managed by the application manager.

11.2 Requesting and accessing services

The Application manager creates a certain number of services by default. These are the
default data access services (EventDataSvc, DetDataSvc, NTupleSvc,
HistogramDataSvc), the default data persistency services (EventPersistencySvc,
DetectorPersistencySvc, HistogramPersistencySvc) and other framework
services (JobOptionsSvc, MessageSvc, ChronoStatSvc, RndmGenSvc,
ParticlePropertiesSvc). Additional services can be requested via the jobOptions file,
 page 97

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
using the property ApplicationMgr.ExtSvc. In the example below this option is used to create
a specific type of event selector and the corresponding conversion service.:

Once created, services must be accessed via their interface. The Algorithm base class
provides a number of accessor methods for the standard framework services, listed on lines 23
to 32 of Listing 5 on page 38. Other services can be located using the ISvcLocator interface
of the Application manager. In the example below we use the serviceLocator() accessor
method of an algorithm to ask the ISvcLocator interface of the Application manager to
return the IParticlePropertySvc interface of the Particle Properties Service:

Listing 33 Job Option to create additional services

ApplicationMgr.ExtSvc = { “SicbEventCnvSvc”,
“SicbEventSelector/EventSelector”};

Listing 34 Code to access the IParticlePropertySvc interface

#include "Gaudi/Interfaces/IParticlePropertySvc.h"
...
IParticlePropertySvc* m_ppSvc;
StatusCode sc = serviceLocator()->getService(

"ParticlePropertySvc",
IID_IParticlePropertySvc,
reinterpret_cast<IInterface*&>(m_ppSvc));

if (sc.isFailure) {
...
page 98

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
11.3 The Job Options Service

The Job Options Service is a mechanism which allows to configure an application at run time,
without the need to recompile or relink. The options, or properties, are set via a job options
file, which is read in when the Job Options Service is initialised by the Application Manager.
In what follows we describe the format of the job options file, including some examples.

11.3.1 Algorithm, Tool and Service Properties

In general a concrete Algorithm, Tool or Service will have several data members which are
used to control the execution of the service or algorithm. These data members can be of a basic
data type (int, float, etc.) or class (Property) that encapsulates some common behaviour and
higher level of functionality.

11.3.1.1 SimpleProperties

Simple properties are a set of classes that act as properties directly in their associated
Algorithm, Tool or Service, replacing the corresponding basic data type instance. The primary
motivation for this is to allow optional bounds checking to be applied, and to ensure that the
Algorithm, Tool or Service itself doesn’t violate those bounds. Available SimpleProperties are:

• int ==> IntegerProperty or SimpleProperty<int>

• double ==> DoubleProperty or SimpleProperty<double>

• bool ==> BooleanProperty or SimpleProperty<bool>)

• std::string ==> StringProperty or SimpleProperty<std::string>

and the equivalent vector classes

• std::vector<int> ==> IntegerArrayProperty or SimpleProperty< std::vector<int> >

• etc.

The use of these classes is illustrated by the EventCounter class.

Listing 35 EventCounter.h

1: #include "Gaudi/Algorithm/Algorithm.h"
2: #include "Gaudi/JobOptionsSvc/Property.h"
3: class EventCounter : public Algorithm {
4: public:
5: EventCounter(const std::string& name, ISvcLocator* pSvcLocator);
6: ~EventCounter();
7: StatusCode initialize();
8: StatusCode execute();
9: StatusCode finalize();

10: private:
11: IntegerProperty m_frequency;
12: int m_skip;
13: int m_total;
14: };
 page 99

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
Notes:

1. A default value may be specified when the property is declared.
2. Optional upper and lower bounds may be set (see later).
3. The value of the property is accessible directly using the property itself.

In the Algorithm constructor, when calling declareProperty, you can optionally set the bounds
using any of:

 setBounds(const T& lower, const T& upper);
 setLower (const T& lower);
 setUpper (const T& upper);

There are similar selectors and modifiers to determine whether a bound has been set etc., or to
clear a bound.

 bool hasLower()
 bool hasUpper()
 T lower()
 T upper()
 void clearBounds()
 void clearLower()
 void clearUpper()

Listing 36 EventCounter.cpp

1: #include "GaudiAlg/EventCounter.h"
2:
3: #include "Gaudi/MessageSvc/MsgStream.h"
4: #include "Gaudi/Kernel/AlgFactory.h"
5:
6: static const AlgFactory<EventCounter> Factory;
7: const IAlgFactory& EventCounterFactory = Factory;
8:
9: EventCounter::EventCounter(const std::string& name, ISvcLocator*

10: pSvcLocator) :
11: Algorithm(name, pSvcLocator),
12: m_skip (0),
13: m_total(0)
14: {
15: declareProperty("Frequency", m_frequency=1); // [1]
16: m_frequency.setBounds(0, 1000); // [2]
17: }
18:
19: StatusCode
20: EventCounter::initialize()
21: {
22: MsgStream log(msgSvc(), name());
23: log << MSG::INFO << name()
24: << ":EventCounter::initialize - Frequency: "
25: << m_frequency << endreq; // [3]
26: return StatusCode::SUCCESS;
27: }
page 100

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
You can set the value using the "=" operator or the set functions

 bool set(const T& value)
 bool setValue(const T& value)

The function value indicates whether the new value was within any bounds and was
therefore successfully updated. In order to access the value of the property, use:

 m_property.value();

In addition there’s a cast operator, so you can also use m_property directly instead of
m_property.value().

11.3.1.2 CommandProperty

CommandProperty is a subclass of StringProperty that has a handler that is called
whenever the value of the property is changed. Currently that can happen only during the job
initialization so it is not terribly useful. Alternatively, an Algorithm could set the property of
one of its sub-algorithms. However, it is envisaged that GAUDI will be extended with a
scripting language such that properties can be modified during the course of execution.

The relevant portion of the interface to CommandProperty is:

 class CommandProperty : public StringProperty {
 public:
 [...]
 virtual void handler(const std::string& value) = 0;
 [...]
 };

Thus subclasses should override the handler() member function, which will be called
whenever the property value changes. A future development is expected to be a
ParsableProperty (or something similar) that would offer support for parsing the string.

11.3.2 Job options file format

The job options file has a well-defined syntax (similar to a simplified C++-Syntax) without
datatypes. The data types are recognised by the “Job Options Compiler”, which interprets the
job options file according to the syntax (described in Appendix C together with possible
compiler error codes).

The job options file is an ASCII-File, composed logically of a series of statements. The end of a
statement is signaled by a semicolon “;“ - as in C++.

Comments are the same as in C++, with ’//’ until the end of the line, or between ’/*’ and ’*/’.

There are four constructs which can be used in a job options file:

• Assignment statement

• Append statement
 page 101

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
• Include directive

• Platform dependent excution directive

 Assignment statement

An assignment statement assigns a certain value (or a vector of values) to a property of an
object or identifier. An assignment statement has the following structure:

The first token (Object / Identifier) specifies the name of the object whose property is
to be set. This must be followed by a dot (’.’)

The next token (Propertyname) is the name of the option to be set, as declared in the
declareProperty() method of the IProperty interface. This must be followed by an
assign symbol (’=’).

The final token (value) is the value to be assigned to the property. It can be a vector of values,
in which case the values are enclosed in array brackets (’{‘,’}‘), and separated by commas (,).
The token must be terminated by a semicolon (’;’).

The type of the value(s) must match that of the variable whose value is to be set, as declared in
declareProperty(). The following types are recognised:

Boolean-type, written as true or false.
e.g. true; false;

Integer-type, written as an integer value (containing one or more of the digits ’0’, ’1’, ’2’, ’3’, ’4’,
’5’, ’6’, ’7’, ’8’, ’9’)

e.g.: 123; -923; or in scientific notation, e.g.: 12e2;

Real-type (similar to double in C++), written as a real value (containing one or more of the
digits ’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’ followed by a dot ’.’ and optionally one or more of digits
again)

e.g.: 123.; -123.45; or in scientific notation, e.g. 12.5e7;

String type, written within a pair of double quotes (‘ ” ’)
e.g.: “I am a string”; (Note: strings without double quotes are not allowed!)

Vector of the types above, within array-brackets (’{’, ’}’), separated by a comma (’,’)
e.g.: {true, false, true};
e.g.: {124, -124, 135e2};
e.g.: {123.53, -23.53, 123., 12.5e2};
e.g.: {“String 1”, “String 2”, “String 3”};

A single element which should be stored in a vector must be within array-brackets without
a comma

e.g. {true};
e.g. {“String”};

<Object / Identifier> . < Propertyname > = < value >;
page 102

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
Please note that it is not necessary any more to define in the job options file the type for the
value which is used. The job options compiler will recognize by itself the type of the value and
will handle this type correctly.

 Append Statement

Because of the possibility of including other job option files (see below), it is sometimes
necessary to extend a vector of values already defined in the other job option file. This
functionality is provided be the append statement.

An append statement has the following syntax:

The only difference from the assignment statement is that the append statement requires the
’+=’ symbol instead of the ‘=’ symbol to separate the Propertyname and value tokens.

The value must be an array of one or more values

e.g. {true};
e.g. {“String”};
e.g.: {true, false, true};
e.g.: {124, -124, 135e2};
e.g.: {123.53, -23.53, 123., 12.5e2};
e.g.: {“String 1”, “String 2”, “String 3”};

The job options compiler itself tests if the object or identifier already exists (i.e. has already
been defined in an included file) and the type of the existing property. If the type is
compatible and the object exists the compiler appends the value to the existing property.

 Including other Job Option Files

It is possible to include other job option files in order to use pre-defined options for certain
objects. This is done using the #include directive:

The “filename.ext” can also contain the path where this file is located. The include
directive can be placed anywhere in the job option file, but it is strongly recommended to
place it at the very top of the file (as in C++).

It is possible to use environment variables in the #include statement, either standalone or as
part of a string. Both Unix style (“$environmentvariable”) and Windows style
(“%environmentvariable%”) are understood (on both platforms!)

As mentioned above, you can append values to vectors defined in an included job option file.
The interpreter creates these vectors at the moment he interprets the included file, so you can
only append elements defined in a file included before the append-statement!

<Object / Identifier> . < Propertyname > += < value >;

#include “filename.ext”
 page 103

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
As in C/C++, an included job option file can include other job option files. The compiler
checks itself whether the include file is already included or not, so there is no need for
#ifndef statements as in C or C++ to check for multiple including.

Sometimes it is necessary to over-ride a value defined previously (maybe in an include file).
This is done by using an assign statement with the same object and propertyname. The last
value assigned is the valid value!

11.3.2.1 Platform dependent execution

The possibility exists to execute statements only according to the used platform. Statements
within platform dependent clauses are only executed if they are asserted to the current used
platform.:

Only the variable WIN32 is defined! An #ifdef WIN32 will check if the used platform is a
Windows platform. If so, it will execute the statements until an #endif or an optional #else.
On non-Windows platforms it will execute the code within #else and #endif. Alternatively
one directly can check for a non-Windows platform by using the #ifndef WIN32 clause.

 Examples

We have already seen an example of a job options file in Listing 2 in Chapter 4.

#ifdef WIN32
(Platform-Dependent Statement)
#else (optional)
(Platform-Dependent Statement)
#endif
page 104

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
11.4 The Standard Message Service

One of the components directly visible to an algorithm object is the message service. The
purpose of this service is to provide facilities for the logging of information, warnings, errors
etc. The advantage of introducing such a component, as opposed to using the standard
std::cout and std::cerr streams available in C++ is that we have more control over
what is printed and where it is printed. These considerations are particularly important in an
online environment.

The Message Service is configurable via the job options file to only output messages if their
“activation level” is equal to or above a given “output level”. The output level can be
configured with a global default for the whole application:

and/or locally for a given client object (e.g. myAlgorithm):

Any object wishing to print some output should (must) use the message service. A pointer to
the IMessageSvc interface of the message service is available to an algorithm via the
accessor method msgSvc(), see section 5.2. It is of course possible to use this interface
directly, but a utility class called MsgStream is provided which should be used instead.

11.4.1 The MsgStream utility

The MsgStream class is responsible for constructing a Message object which it then passes
onto the message service. Where the message is ultimately sent to is decided by the message
service.

In order to avoid formatting messages which will not be sent because the verboseness level is
too high, a MsgStream object first checks to see that a message will be printed before actually
constructing it. However the threshold for a MsgStream object is not dynamic, i.e. it is set at
creation time and remains the same. Thus in order to keep synchronized with the message
service, which in principle could change its printout level at any time, MsgStream objects
should be made locally on the stack when needed. For example, if you look at the listing of the
HistoAlgorithm class (see also Listing 37 below) you will note that MsgStream objects are
instantiated locally (i.e. not using new) in all three of the IAlgorithm methods and thus are
destructed when the methods return. If this is not done messages may be lost, or too many
messages may be printed.

The MsgStream class has been designed to resemble closely a normal stream class such as
std::cout, and in fact internally uses an ostrstream object. All of the MsgStream
member functions write unformatted data; formatted output is handled by the insertion
operators.

// Set output level threshold (2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR, 6=FATAL)
MessageSvc.OutputLevel = 4;

myAlgorithm.OutputLevel = 2;
 page 105

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
An example use of the MsgStream class is shown below.

When using the MsgStream class just think of it as a configurable output stream whose
activation is actually controlled by the first word (message level) and which actually prints
only when “endreq” is supplied. For all other functionality simply refer to the C++ ostream
class.

The “activation level” of the MsgStream object is controlled by the first expression, e.g.
MSG::ERROR or MSG::DEBUG in the example above. Possible values are given by the
enumeration below:

Thus the code in Listing 37 will produce NO output if the print level of the message service is
set higher than MSG::ERROR. In addition if the service’s print level is lower than or equal to
MSG::DEBUG the “Finalize completed successfully” message will be printed (assuming
of course it was successful).

 User interface

What follows is a technical description of the part of the MsgStream user interface most often
seen by application developers. Please refer to the header file for the complete interface.

Insertion Operator

The MsgStream class overloads the ’<<‘ operator as described below.

MsgStream& operator <<(TYPE arg);

Insertion operator for various types. The argument is only formatted by the
stream object if the print level is sufficiently high and the stream is active.
Otherwise the insertion operators simply return. Through this mechanism
extensive debug printout does not cause large run-time overheads. All common
base types such as char, unsigned char, int, float, etc. are supported

Listing 37 Use of a MsgStream object.

1: #include “Gaudi/MessageSvc/MgsStream.h”
2:
3: StatusCode myAlgo::finalize() {
4: StatusCode status = Algorithm::finalise();
5: MsgStream log(msgSvc(), name());
6: if (status.isFailure()) {
7: // Print a two line message in case of failure.
8: log << MSG::ERROR << “ Finalize failed” << endl
9: << “Error initializing Base class.” << endreq;
10: }
11: else {
12: log << MSG::DEBUG << “Finalize completed successfully” << endreq;
13: }
14: return status;
15: }

enum MSG::Level { VERBOUS, DEBUG, INFO, WARNING, ERROR, FATAL };
page 106

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
MsgStream& operator <<(MSG::Level level);

This insertion operator does not format any output, but rather (de)activates the
stream’s formatting and forwarding engine depending on the value of level.

Accepted Stream Manipulators

The MsgStream specific manipulators are presented below, e.g. endreq: MsgStream&
endreq(MsgStream& stream). Besides these, the common ostream and ios manipulators
such as std::ends, std::endl,... are also accepted.

endl Inserts a newline sequence. Opposite to the ostream behaviour this manipulator does
not flush the buffer. Full name: MsgStream& endl(MsgStream& s)

ends Inserts a null character to terminate a string. Full name: MsgStream&
ends(MsgStream& s)

flush Flushes the stream's buffer but does not produce any output! Full name: MsgStream&
flush(MsgStream& s)

endreq Terminates the current message formatting and forwards the message to the message
service. If no message service is assigned the output is sent to std::cout. Full name:
MsgStream& endreq(MsgStream& s)
 page 107

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
11.5 The Particle Properties Service

The Particle Property service is a utility to find information about a named particle’s Geant3
ID, Jetset/Pythia ID, Geant3 tracking type, charge, mass or lifetime. The database used by the
service can be changed, but by default is the same as that used by SICb. Note that the units
conform to the CLHEP convention, in particular MeV for masses and ns for lifetimes. Any
comment to the contrary in the code is just a leftover which has been overlooked!

11.5.1 Initialising and Accessing the Service

This service is created by default by the application manager, with the name
“ParticlePropertySvc”. Listing 34 on page 98 shows how to access this service from within an
algorithm.

11.5.2 Service Properties

The Particle Property Service currently only has one property: ParticlePropertiesFile.
This string property is the name of the database file that should be used by the service to build
up its list of particle properties. The default value of this property, on all platforms, is
$LHCBDBASE/cdf/particle.cdf

11.5.3 Service Interface

The service implements the IParticlePropertySvc interface which must be included
when a client wishes to use the service - the file to include is
Gaudi/Interfaces/IParticlePropertySvc.h

The service itself consists of one STL vector to access all of the existing particle properties, and
three STL maps, one to map particles by name, one to map particles by Geant3 ID and one to
map particles by stdHep ID.

Although there are three maps, there is only one copy of each particle property and thus each
property must have a unique particle name and a unique Geant3 ID. The third map does not
contain all particles contained in the other two maps; this is because there are particles known
to Geant but not to stdHep, such as Deuteron or Cerenkov. Although retrieving particles by
name should be sufficient, the second and third maps are there because most of the data
generated by SICb stores a particle’s Geant3 ID or stdHep ID, and not the particle’s name.
These maps speed up searches using the IDs.
page 108

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
The IParticlePropertySvc interface provides the following functions:

Listing 38 The IParticlePropertySvc interface.

// IParticlePropertySvc interface:
// Create a new particle property.
// Input: particle, String name of the particle.
// Input: geantId, Geant ID of the particle.
// Input: jetsetId, Jetset ID of the particle.
// Input: type, Particle type.
// Input: charge, Particle charge (/e).
// Input: mass, Particle mass (MeV).
// Input: tlife, Particle lifetime (ns).
// Return: StatusCode - SUCCESS if the particle property was added.
virtual StatusCode push_back(const std::string& particle, int geantId, int
jetsetId, int type, double charge, double mass, double tlife);

// Create a new particle property.
// Input: pp, a particle property class.
// Return: StatusCode - SUCCESS if the particle property was added.
virtual StatusCode push_back(ParticleProperty* pp);

// Get a const reference to the begining of the map.
virtual const_iterator begin() const;

// Get a const reference to the end of the map.
virtual const_iterator end() const;

// Get the number of properties in the map.
virtual int size() const;

// Retrieve a property by geant id.
// Pointer is 0 if no property found.
virtual ParticleProperty* find(int geantId);

// Retrieve a property by particle name.
// Pointer is 0 if no property found.
virtual ParticleProperty* find(const std::string& name);

// Retrieve a property by StdHep id
// Pointer is 0 if no property found.
virtual ParticleProperty* findByStdHepID(int stdHepId);

// Erase a property by geant id.
virtual StatusCode erase(int geantId);

// Erase a property by particle name.
virtual StatusCode erase(const std::string& name);

// Erase a property by StdHep id
virtual StatusCode eraseByStdHepID(int stdHepId);
 page 109

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
The IParticlePropertySvc interface also provides some typedefs for easier coding:

11.5.4 Examples

Below are some extracts of code from the example in
GaudiExamples/ParticleProperties, to show how one might use the service:

typedef ParticleProperty* mapped_type;
typedef std::map< int, mapped_type, std::less<int> > MapID;
typedef std::map< std::string, mapped_type, std::less<std::string> > MapName;
typedef std::map< int, mapped_type, std::less<int> > MapStdHepID;
typedef IParticlePropertySvc::VectPP VectPP;
typedef IParticlePropertySvc::const_iterator const_iterator;
typedef IParticlePropertySvc::iterator iterator;

Listing 39 Code fragment to find particle properties by particle name.

 // Try finding particles by the different methods
 log << MSG::INFO << "Trying to find properties by Geant3 ID..." << endreq;
 ParticleProperty* pp1 = m_ppSvc->find(1);
 if (pp1) log << MSG::INFO << *pp1 << endreq;
 log << MSG::INFO << "Trying to find properties by name..." << endreq;
 ParticleProperty* pp2 = m_ppSvc->find("e+");
 if (pp2) log << MSG::INFO << *pp2 << endreq;
 log << MSG::INFO << "Trying to find properties by StdHep ID..." << endreq;
 ParticleProperty* pp3 = m_ppSvc->findByStdHepID(521);
 if (pp3) log << MSG::INFO << *pp3 << endreq;

Listing 40 Code fragment showing how to use the map iterators to access particle properties.

// List all properties
log << MSG::DEBUG << "Listing all properties..." << endreq;
for(IParticlePropertySvc::const_iterator i = m_ppSvc->begin();

i != m_ppSvc->end(); i++) {
if (*i) log << *(*i) << endreq;

}

page 110

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
11.6 The Chrono & Stat service

The Chrono & Stat service provides a facility to do time profiling of code (Chrono part) and to
do some statistical monitoring of simple quantities (Stat part). The service is created by
default by the Application Manager, with the name “ChronoStatSvc” and service ID
extern const CLID& IID_IChronoStatSvc To access the service from inside an
algorithm, the member function chronoSvc()is provided. The job Options to configure this
service are described in Appendix B, Table B.15.

11.6.1 Code profiling

Profiling is performed by using the chronoStart() and chronoStop() methods inside
the codes to be profiled, e.g:

The profiling information accumulates under the tag name given as argument to these
methods. The service measures the time elapsed between subsequent calls of
startChrono() and endChrono() with the same tag. The latter is important, since in the
sequence of calls below, only the elapsed time between lines 3 and 5 lines and between lines 7
and 9 lines would be accumulated.:

The profiling information could be printed either directly using the printChrono() method
of the service, or in the summary table of profiling information at the end of the job.

/// ...
IChronoStatSvc* svc = ...
/// start
svc->startChrono("Some Tag");
/// here some user code are placed:
...
/// stop
svc->stopChrono("SomeTag");

1: svc->endChrono("Tag");
2: svc->endChrono("Tag");
3: svc->startChrono("Tag");
4: svc->startChrono("Tag");
5: svc->endChrono("Tag");
6: svc->endChrono("Tag");
7: svc->startChrono("Tag");
8: svc->startChrono("Tag");
9: svc->endChrono("Tag");
 page 111

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
11.6.2 Statistical monitoring

Statistical monitoring is performed by using the stat() method inside user code:

The statistical information contains the "accumulated" flag, which is the sum of all Flags for the
given tag, and the "accumulated" weight, which is the product of all Weights for the given tag.
The information is printed in the final table of statistics.

In some sense the profiling could be considered as statistical monitoring, where the variable
Flag equals the elapsed time of the process.

11.6.3 Chrono and Stat helper classes

To simplify the usage of the Chrono & Stat Service, two helper classes were developed: class
Chrono and class Stat. Using these utilities, one hides the communications with Chrono
& Stat Service and provides a more friendly environment.

11.6.3.1 Chrono

Chrono is a small helper class which invokes the startChrono() method in the constructor
and the endChrono() method in the destructor. It must be used as an automatic local object.

It performs the profiling of the code between its own creation and the end of the current
scope, e.g:

If the Chrono & Stat Service is not accessible, the Chrono object does nothing

1: /// ... Flag and Weight to be accumulated:
2: svc->stat(" Number of Tracks " , Flag , Weight);

1: #include Gaudi/ChronoStatSvc/Chrono.h
2: /// ...
3: { // begin of the scope
4: Chrono chrono(svc , "ChronoTag") ;
5: /// some codes:
6: ...
7: ///
8: } // end of the scope
9: /// ...
page 112

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
11.6.3.2 Stat

Stat is a small helper class, which invokes the stat() method in the constructor.

If the Chrono Stat Service is not accesible, the Stat object does nothing.

11.6.4 Performance considerations

The implementation of the Chrono & Stat Service uses two std::map containers and could
generate a performance penalty for very frequent calls. Usually the penalty is small relative to
the elapsed time of algorithms, but it is worth avoiding both the direct usage of the Chrono &
Stat Service as well as the usage of it through the Chrono or Stat utilities inside internal
loops:

1: Gaudi/ChronoStatSvc/Stat.h
2: /// ...
3: Stat stat(svc , "StatTag" , Flag , Weight) ;
4: /// ...

1: /// ...
2: { /// begin of the scope
3: Chrono chrono(svc , "Good Chrono"); /// OK
4: long double a = 0 ;
5: for(long i = 0 ; i < 1000000 ; ++i)
6: {
7: Chrono chrono(svc , "Bad Chrono"); /// not OK
8: /// some codes :
9: a += sin(cos(sin(cos((long double) i))));

10: /// end of codes
11: Stat stat (svc , "Bad Stat", a); /// not OK
12: }
13: Stat stat (svc , "Good Stat", a); /// OK
14: } /// end of the scope!
15: /// ...
 page 113

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
11.7 The Random Numbers Service

When generating random numbers two issues must be considered:

• reproducibility and

• randomness of the generated numbers.

In order to ensure both, GAUDI implements a single service ensuring that these criteria are
met. The encapsulation of the actual random generator into a service has several advantages:

• Random seeds are set by the framework. When debugging the detector simulation,
the program could start at any event independent of the events simulated before.
Unlike the random number generators that were known from CERNLIB, the state of
modern generators is no longer defined by one or two numbers, but rather by a fairly
large set of numbers. To ensure reproducibility the random number generator must
be initialized for every event.

• The distribution of the random numbers generated is independent of the random
number engine behind. Any distribution can be generated starting from a flat
distribution.

• The actual number generator can easily be replaced if at some time in the future
better generators become available, without affecting any user code.

The implementation of both generators and random number engines are taken from CLHEP.
The default random number engine used by GAUDI is the RanLux engine of CLHEP with a
luxury level of 3. This ensures that packages used to simulate the detector, such as GEANT4,
use the same mechanism to generate random numbers. Figure 21 shows the general
architecture of the GAUDI random number service. The client interacts with the service in the
following way:

• The client requests a generator from the service, which is able to produce a generator
according to a requested distribution. The client then retrieves the requested
generator.

• Behind the scenes, the generator service creates the requested generator and
initializes the object according to the parameters. The service also supplies the shared
random number engine to the generator.

• After the client has finished using the generator, the object must be released in order
to inhibit resource leaks.

Figure 21 The architecture of the random number service. The client requests a random number generator
satisfying certain criteria from the service.

RndmGenSvc

RndmGen RndmEngine

Distribution:
Gauss

owns & initializes

usesowns
page 114

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
There are many different distributions available. The shape of the distribution must be
supplied as a parameter when the generator is requested by the user.

Currently implemented distributions include the following:
(see also the header file Gaudi/RndmGenSvc/RandomGenerators.h for a description of
the parameters to be supplied)

• Generate random bit patterns with parameters Rndm::Bit()

• Generate a flat distribution with boundaries [min, max] with parameters:
Rndm::Flat(double min, double max)

• Generate a gaussian distribution with parameters: Rndm::Gauss(double mean,
double sigma)

• Generate a poissonian distribution with parameters: Rndm::Poisson(double
mean)

• Generate a binomial distribution according to n tests with a probability p with
parameters: Rndm::Binomial(long n, double p)

• Generate an exponential distribution with parameters:
Rndm::Exponential(double mean)

• Generate a Chi**2 distribution with n_dof degrees of freedom with parameters:
Rndm::Chi2(long n_dof)

• Generate a Breit-Wigner distribution with parameters:
Rndm::BreitWigner(double mean, double gamma)

• Generate a Breit-Wigner distribution with a cut-off with parameters:
Rndm::BreitWignerCutOff (mean, gamma, cut-off)

• Generate a Landau distribution with parameters:
Rndm::Landau(double mean, double sigma)

• Generate a user defined distribution. The probability density function is given by a
set of descrete points passed as a vector of doubles:
Rndm::DefinedPdf(const std::vector<double>& pdf, long intpol)

Clearly the supplied list of possible parameters is not exhaustive, but probably represents
most needs. The list only represents the present content of generators available in CLHEP and
can be updated in case other distributions will be implemented.

Since there is a danger that the interfaces are not released, a wrapper is provided that
automatically releases all resources once the object goes out of scope. This wrapper allows the
use of the random number service in a simple way. Typically there are two different usages of
this wrapper:

• Within the user code only a series of numbers is required once, ie. not every event. In
this case the object is used locally and resources are released immediately after use.
This example is shown in Listing 41.
 page 115

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
• One or several random numbers are required for the processing of every event. En
example is shown in Listing 42 and Listing 43

There are a few points to be mentioned in order to ensure the reproducability:

• Do not keep numbers across events. If you need a random number ask for it. Usually
caching does more harm than good. If there is a performance penalty, it is better to
find a more generic solution.

• Do not access the RndmEngine directly.

• Do not manipulate the engine. The random seeds should only be set by the
framework on an event by event basis.

Listing 41 Example of the use of the random number generator for filling a histogram with a gaussian
distribution within a standard GAUDI algorithm.

1: Rndm::Numbers gauss(randSvc(), Rndm::Gauss(0.5,0.2));
2: if (gauss) {
3: IHistogram1D* his = histoSvc()->book("/stat/2","Gaussian",40,0.,3.);
4: for (long i = 0; i < 5000; i++)
5: his->fill(gauss(), 1.0);
6: }

Listing 42 Example of the use of the random number generator for filling a histogram with a gaussian
distribution within a standard GAUDI algorithm. The wrapper to the generator is declared within the header file
of the algorithm, hence it is part of the Algorithm itself

1: #include ìGaudi/RandmGenSvc/RndmGenerators.hî
1: class myAlgorithm : public Algorithm {
1: Rndm::Numbers m_gaussDist;
2: ...
3: };

Listing 43 When part of the algorithm, the generator must be initialized before being used. Afterwards the
usage is identical to the example described in .Listing 41.

1: StatusCode sc=m_gaussDist.initialize(randSvc(), Rndm::Gauss(0.5,0.2));
1: if (!status.isSuccess()) {
2: // put error handling code here...
3: }
page 116

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
11.8 Developing new services

11.8.1 The Service base class

Within Gaudi we use the term "Service" to refer to a class whose job is to provide a set of
facilities or utilities to be used by other components. In fact we mean more than this because a
concrete service must derive from the Service base class and thus has a certain amount of
predefined behaviour; for example it has intialize() and finalize() methods which
are invoked by the application manager at well defined times.

Figure 22 shows the inheritance structure for an example service called SpecificService
(!). The key idea is that a service should derive from the Service base class and additionally
implement one or more pure abstract classes (interfaces) such as IConcreteSvcType1 and
IConcreteSvcType2 in the figure.

As discussed above, it is necessary to derive from the Service base class so that the concrete
service may be made accessible to other Gaudi components. The actual facilities provided by
the service are available via the interfaces that it provides. For example the
ParticleProperties service implements an interface which provides methods for
retrieving, for example, the mass of a given particle. In figure 22 the service implements two
interfaces each of two methods.

A component which wishes to make use of a service makes a request to the application
manager. Services are requested by a combination of name, and interface type, i.e. an
algorithm would request specifically either IConcreteSvcType1 or IConcreteSvcType2.

The identification of what interface types are implemented by a particular class is done via the
queryInterface method of the IInterface interface. This method must be implemented
in the concrete service class. In addition the initialize() and finalize() methods
should be implemented. After initialization the service should be in a state where it may be
used by other components.

The service base class offers a number of facilities itself which may be used by derived
concrete service classes:

• Properties are provided for services just as for algorithms. Thus concrete services
may be fine tuned by setting options in the job options file.

• A serviceLocator method is provided which allows a component to request the
use of other services which it may need.

• A message service.
 page 117

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
Figure 22 Implementation of a concrete service class. Though not shown in the figure, both of the IConcreteSvcType
interfaces are derived from IInterface.

IInterface

queryInterface()

IService

name()
initialize()
finalize()

IProperty

setProperty()
getProperty()

Service

SpecificService

IConcreteSvcType1

method1()
method2()

IConcreteSvcType2

method3()
method4()
page 118

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
11.8.2 Implementation details

The following is essentially a checklist of the minimal code required for a service.

1. Define the interfaces:

2. Derive the concrete service class from the Service base class.

3. Implement the queryInterface() method.

4. Implement the initialize() method. Within this method you should make a call
to Service::initialize() as the first statement in the method and also make an
explicit call to setProperties() in order to read the service’s properties from the
job options (note that this is different from Algorithms, where the call to
setProperties() is done in the base class).

Listing 44 An interface class

#include "Gaudi/interfaces/IInterface.h"

class IConcreteSvcType1 : virtual public IInterface {
public:
 void method1() = 0;
 int method2() = 0;
}

#include "IConcreteSvcType1.h"

const IID& IID_IConcreteSvcType1 = 143; // UNIQUE within LHCb !!
 page 119

GAUDI User Guide
Chapter 11 Framework services Version/Issue: 5/1
Listing 45 A minimal service implementation

#include "Gaudi/Kernel/Service.h"
#include "IConcreteSvcType1.h"
#include "IConcreteSvcType2.h"

class SpecificService : public Service,
virtual public IConcreteSvcType1,
virtual public IConcreteSvcType2 {

public:
 // Constructor of this form required:
 SpecificService(const std::string& name, ISvcLocator* sl);

 queryInterface(constIID& riid, void** ppvIF);
};

// Factory for instantiation of service objects
static SvcFactory<SpecificService> s_factory;
const ISvcFactory& SpecificServiceFactory = s_factory;

// UNIQUE Interface identifiers defined elsewhere
extern const IID& IID_IConcreteSvcType1;
extern const IID& IID_IConcreteSvcType2;

// queryInterface
StatusCode SpecificService::queryInterface(const IID& riid, void** ppvIF) {

if(IID_IConcreteSvcType1 == riid) {
ppvIF = dynamic_cast<IConcreteSvcType1> (this);
return StatusCode::SUCCESS;

} else if(IID_IConcreteSvcType2 == riid) {
ppvIF = dynamic_cast<IConcreteSvcType2> (this);
return StatusCode::SUCCESS;

} else {
return Service::queryInterface(riid, ppvIF);

}
}

StatusCode SpecificService::initialize() { ... }
StatusCode SpecificService::finalize() { ... }

// Implement the specifics ...
SpecificService::method1() {...}
SpecificService::method2() {...}
SpecificService::method3() {...}
SpecificService::method4() {...}
page 120

GAUDI User Guide
Chapter 12 Tools and ToolSvc Version/Issue: 5/1
Chapter 12

Tools and ToolSvc

12.1 Overview

Tools are light weight objects whose purpose is to help other components perform their work.
A framework service, the ToolSvc, is responsible for creating and managing Tools. An
Algorithm requests the tools it needs to the ToolSvc, specifying if requesting a private
instance by declaring itself as the parent. Since Tools are managed by the ToolSvc, any
component1 can request a tool. Only Algorithms and Services can declare themselves as Tools
parents.

In this chapter we first describe these objects and the difference between “private” and
“shared” tools. We then look at the AlgTool base class and show how to write concrete Tools.

Finally we describe the ToolSvc and show how a component can retrieve Tools via the
service.

12.2 Tools

As mentioned elsewhere Algorithms make use of framework services to perform their
work. In general the same instance of a service is used by many algorithms and Services are
setup and initialized once at the beginning of the job by the framework. Algorithms also
delegate some of their work to sub-algorithms. Creation and execution of sub-algorithms are
the responsibilities of the parent algorithm whereas the initialize() and finalize()
methods are invoked automatically by the framework while initializing the parent algorithm.
The properties of a sub-algorithm are automatically set by the framework but the parent
algorithm can change them during execution. Sharing of data between nested algorithms is
done via the Transient Event Store.

1. In this chapter we will use an Algorithm as example component requesting tools.
 page 121

GAUDI User Guide
Chapter 12 Tools and ToolSvc Version/Issue: 5/1
Both Services and Algorithms are created during the initialization stage of a job and live
until the jobs ends.

Sometimes an encapsulated piece of code needs to be executed only for specific events, in
which case it is desirable to create it only when necessary. On other occasions the same piece
of code needs to be executed many times per event. Moreover it can be necessary to execute a
sub-algorithm on specific contained objects that are selected by the parent algorithm or have
the sub-algorithm produce new contained objects that may or may not be put in the Transient
Store. Finally different algorithms may wish to configure the same piece of code slightly
differently or share it as-is with other algorithms.

To provide this kind of functionality we have introduced a category of processing objects that
encapsulate these “light” algorithms. We have called this category Tools.

Some examples of possible tools are single track fitters, association to Monte Carlo truth
information, vertexing between particles, smearing of Monte Carlo quantities.

12.2.1 “Private” and “Shared” Tools

Algorithms can share instances of Tools with other Algorithms if the configuration of
the tool is suitable. In some cases however an Algorithm will need to customize a tool in a
specific way in order to use it. This is possible by requesting the ToolSvc to provide a
“private” instance of a tool.

If an Algorithm passes a pointer to itself when it asks the ToolSvc to provide it with a
tool, it is declaring itself as the parent and a “private” instance is supplied. Private instances
can be configured according to the needs of each particular Algorithm via jobOptions.

As mentioned above many Algorithms can use a tool as-is, in which case only one instance
of a Tool is created, configured and passed by the ToolSvc to the different algorithms. This
is called a “shared” instance. The parent of “shared” tools is the ToolSvc.

12.2.2 The Tool classes

12.2.2.1 The AlgTool base class

The main responsibilities of the AlgTool base class (see Listing 46) are the identification of
the tools instances, the initialisation of certain internal pointers when the tool is created and
the management of the tools properties. The AlgTool base class also offers some facilities to
help in the implementation of derived tools.

Access to Services - A serviceLocator() method is provided to enable the derived tools
to locate the services necessary to perform their jobs. Since concrete Tools are instantiated by
the ToolSvc upon request, all Services created by the framework prior to the creation of a
tool are available. In addition access to the message service is provided via the msgSvc()
method. Both pointers are retrieved from the parent of the tool.
page 122

GAUDI User Guide
Chapter 12 Tools and ToolSvc Version/Issue: 5/1
Declaring Properties - A set of methods for declaring properties similarly to Algorithms is
provided. This allows tuning of data members used by the Tools via JobOptions files. The
ToolSvc takes care of calling the setProperties() method of the AlgTool base class
after having instantiated a tool. Properties need to be declared in the constructor of a Tool.
The property outputLevel is declared in the base class and is identically set to that of the
parent component. For details on Properties see section 11.3.1.

Constructor - The base class has a single constructor which takes three arguments. The first is
the type (i.e. the class) of the Tool object being instantiated, the second is the full name of the
object and the third is a pointer to the IInterface of the parent component. The name is
used for the identification of the tool instance as described below.The parent interface is used
by the tool to access for example the outputLevel of the parent.

Listing 46 The definition of the AlgTool Base class

1: class AlgTool : public virtual IAlgTool,
2: public virtual IProperty {
3:
4: public:
5: // Standard Constructor.
6: AlgTool(const std::string& type, const std::string& name,

const IInterface* parent);
7:
8: virtual const std::string& name() const;
9: virtual const std::string& type() const;

10: virtual const IInterface* parent() const;
11:
12: virtual StatusCode setProperty(const Property& p);
13: virtual StatusCode getProperty(Property* p) const;
14: virtual const Property& getProperty(const std::string& name) const;
15: virtual const std::vector<Property*>& getProperties() const;
16:
17: ISvcLocator* serviceLocator();
18: IMessageSvc* msgSvc();
19: IMessageSvc* msgSvc() const;
20:
21: StatusCode setProperties();
22:
23: StatusCode declareProperty(const std::string& name, int& reference);
24: StatusCode declareProperty(const std::string& name, double& reference);
25: StatusCode declareProperty(const std::string& name, bool& reference);
26: StatusCode declareProperty(const std::string& name,

std::string& reference);
27: StatusCode declareProperty(const std::string& name,

std::vector<int>& reference);
28: StatusCode declareProperty(const std::string& name,

std::vector<double>& reference);
29: StatusCode declareProperty(const std::string& name,

std::vector<bool>& reference);
30: StatusCode declareProperty(const std::string& name,

std::vector<std::string>& reference);
31:
32: protected:
33: // Standard destructor.
34: virtual ~AlgTool();
 page 123

GAUDI User Guide
Chapter 12 Tools and ToolSvc Version/Issue: 5/1
IAlgTool Interface - It consists of three accessor methods for the identification and
managment of the tools: type(), name() and parent(). These methods are all
implemented by the base class and should not be overridden.

12.2.2.2 Tools identification

A tool instance is identified by its full name. The name consist of the concatenation of the
parent name, a dot, and a tool dependent part. The tool dependent part can be specified by the
user, when not specified the tool type (i.e. the class) is automatically taken as the tool
dependent part of the name. Examples of tool names are RecPrimaryVertex.VertexSmearer
(a private tool) and ToolSvc.AddFourMom (a shared tool). The full name of the tool has to be
used in the jobOptions file to set its properties.

12.2.2.3 Concrete tools classes

Operational functionalities of tools must be provided in the derived tool classes. A concrete
tool class must inherit directly or indirectly from the AlgTool base class to ensure that it has
the predefined behaviour needed for management by the ToolSvc. The inheritance structure
of derived tools is shown in Figure 23. ConcreteTool1 implements one additional abstract
interface while ConcreteTool3 and ConcreteTool4 derive from a base class SubTool
that provides them with additional common functionality.

The idea is that concrete tools should implement additional interfaces, specific to the task a
tool is designed to perform. Specialised tools intended to perform similar tasks can be derived
from a common base class that will provide the common functionality and implement the
common interface. Consider as example the vertexing of particles, where separate tools can
implement different algorithms but the arguments passed are the same.

Figure 23 Tools classes hierarchy

$OJ7RRO

,3URSHUW\

6XE7RRO

,6XE7RRO

&RQFUHWH7RRO�

&RQFUHWH7RRO�

,$OJ7RRO

&RQFUHWH7RRO�

,&RQFUHWH7RRO�

&RQFUHWH7RRO�
page 124

GAUDI User Guide
Chapter 12 Tools and ToolSvc Version/Issue: 5/1
12.2.2.4 Implementation of concrete tools

An example minimal implementation of a concrete tool is shown in Listing 47 and Listing 48,
taken from the ToolsAnalysis example application distributed with the Gaudi framework..

The creation of concrete tools is similar to that of Algorithms, making use of a Factory
Method. As for Algorithms, Tool factories enable their creator to instantiate new tools without
having to include any of the concrete tools header files. A template factory is provided and a
tool developer will only need to add the concrete factory in the implementation file as shown
in lines 1 to 4 of Listing 48

In addition a concrete tool class must specify a single constructor with the same parameter
signatures as the constructor of the AlgTool base class as shown in line 5 of Listing 47.

Listing 47 Example of a concrete tool minimal implementation header file

1: #include "Gaudi/Kernel/AlgTool.h"
2: class VertexSmearer : public AlgTool {
3: public:
4: // Constructor
5: VertexSmearer(const std::string& type, const std::string& name,

const IInterface* parent);
6: // Standard Destructor
7: virtual ~VertexSmearer() { }
8: // specific method of this tool
1: StatusCode smear(MyAxVertex* pvertex);

Listing 48 Example of a concrete tool minimal implementation file

1: #include "Gaudi/Kernel/ToolFactory.h"
2: // Static factory for instantiation of algtool objects
3: static ToolFactory<VertexSmearer> s_factory;
4: const IToolFactory& VertexSmearerFactory = s_factory;
5:
6: // Standard Constructor
7: VertexSmearer::VertexSmearer(const std::string& type,

const std::string& name,
const IInterface* parent)

: AlgTool(type, name, parent) {
8:
9: // Locate service needed by the specific tool

10: m_randSvc = 0;
11: if(serviceLocator()) {
12: StatusCode sc=StatusCode::FAILURE;
13: sc = serviceLocator()->getService("RndmGenSvc",

IID_IRndmGenSvc,
(IInterface*&) (m_randSvc));

14: }
15: // Declare properties of the specific tool
16: declareProperty("dxVtx", m_dxVtx = 9 * micrometer);
17: declareProperty("dyVtx", m_dyVtx = 9 * micrometer);
18: declareProperty("dzVtx", m_dzVtx = 38 * micrometer);
19: }
20: // Implement the specific method
21: StatusCode VertexSmearer::smear(MyAxVertex* pvertex) {...}
 page 125

GAUDI User Guide
Chapter 12 Tools and ToolSvc Version/Issue: 5/1
Below is the minimal checklist of the code necessary when developing a Tool:

1. Derive the tool class from the AlgTool base class

2. Provide the constructor

3. Implement the factory adding the lines of code shown in Listing 48

In addition if the tool is implementing an additional interface you may need to:

1. Define specific interface

2. Implement the queryInterface() method.

3. Implement the specific interface methods.

12.3 The ToolSvc

The ToolSvc manages Tools. It is its responsibility to create tools and make them available
to Algorithms or Services.

The ToolSvc verifies if a tool type is available and creates the necessary instance after having
verified if it doesn’t already exist. If a tool instance exists the ToolSvc will not create a new
identical one but pass to the algorithm the existing instance. Tools are created on a “first
request” basis: the first Algorithm requesting a tool will prompt its creation. The relationship
between an algorithm, the ToolSvc and Tools is shown in Figure 24.

The ToolSvc will “hold” a tool until it is no longer used by any component or until the
finalize() method of the tool service is called. Algorithms can inform the ToolSvc they
are not going to use a tool previously requested via the releaseTool method of the
IToolSvc interface1.

Figure 24 ToolSvc design diagram

,3URSHUW\

&RQFUHWH$OJRULWKP

,7RRO6YF

,7RRO)DFWRU\

,$OJ7RRO

,6HUYLFH

7RRO6YF

7RRO)DFWRU\

��7�!

$OJ7RRO

&RQFUHWH7RRO
page 126

GAUDI User Guide
Chapter 12 Tools and ToolSvc Version/Issue: 5/1
At the moment the ToolSvc is provided as an external service and has to be requested via the
jobOptions file using the property ApplicationMgr.ExtSvc as shown below:

Algorithms wishing to use the service need to locate it. This can be done using the
serviceLocator() accessor method provided in the Algorithm base class that will return
the IToolSvc interface as shown in the lines below.

In future releases, with the consolidation of Tools and ToolSvc, the service will become one
of those created by default by the Application manager and the Algorithm base class will
have an accessor method to the ToolSvc.

12.3.1 Retrieval of tools via the IToolSvc interface

The IToolSvc interface is the ToolSvc specific interface providing methods to retrieve
tools. The interface has two retrieve methods that differ in their parameters signature, as
shown in Listing 49

The arguments of the method shown in Listing 49, line 1, are the tool type (i.e. the class) and
the IAlgTool interface of the returned tool. In addition there are two arguments with default
values: one is the IInterface of the component requesting the tool, the other a boolean
creation flag. If the component requesting a tool passes a pointer to itself as the third
argument, it declares to the ToolSvc that is asking a “private” instance of the tool. By default

1. The releaseTool method is not available in this release

ApplicationMgr.ExtSvc += { ToolSvc };

include "Gaudi/Interfaces/IToolSvc.h"
...
IToolSvc* toolSvc=0;
StatusCode sc = serviceLocator()->getService("ToolSvc",

IID_IToolSvc,
(IInterface*&)(toolSvc));

if (sc.isFailure) {
...

Listing 49 The IToolSvc interface methods

1: virtual StatusCode retrieve(const std::string& type,
IAlgTool*& tool,
const IInterface* parent=0,
bool createIf=true) = 0;

2: virtual StatusCode retrieve(const std::string& type,
const std::string& name,
IAlgTool*& tool,
const IInterface* parent=0,
bool createIf=true) = 0;
 page 127

GAUDI User Guide
Chapter 12 Tools and ToolSvc Version/Issue: 5/1
a “shared” instance is provided. In general if the requested instance of a Tool does not exist
the ToolSvc will create it. This behaviour can be changed by setting to false the last
argument of the method.

The method shown in Listing 49, line 2 differs from the one shown in line 1 by an extra
argument, a string specifying the tool dependent part of the full tool name. This enables a
component to request two separately configurable instances of the same tool.

To help the retrieval of concrete tools two template functions, as shown in Listing 50, are
provided in the IToolSvc interface file.

The two template methods correspond to the IToolSvc retrieve methods but have the tool
returned as a template parameter. Using these methods the component retrieving a tool
avoids explicit dynamic-casting to specific additional interfaces or to derived classes.

Listing 51 shows an example of retrieval of a shared and of a common tool.

Listing 50 The IToolSvc template methods

1: template <class T>
2: StatusCode retrieveTool(const std::string& type,

 T*& tool,
const IInterface* parent=0,
bool createIf=true) {...}

3: template <class T>
4: StatusCode retrieveTool(const std::string& type,

 const std::string& name,
T*& tool,
const IInterface* parent=0,
bool createIf=true) {...}

Listing 51 Example of retrieval of a shared tool in line 8: and of a private tool in line 14:

1: IToolSvc* toolsvc = 0;
2: sc = serviceLocator()->getService("ToolSvc", IID_IToolSvc,

 (IInterface*&)(toolsvc));
3: if(sc.isFailure()) {
4: log << MSG::FATAL << " Unable to locate Tool Service" << endreq;

return sc;
5: }
6: // Example of tool belonging to the ToolSvc and shared between
7: // algorithms
8: sc = toolsvc->retrieveTool("AddFourMom", m_sum4p);
9: if(sc.isFailure()) {

10: log << MSG::FATAL << " Unable to create AddFourMom tool" << endreq;
11: return sc;
12: }
13: // Example of private tool
14: sc = toolsvc->retrieveTool("ImpactPar", m_ip, this);
15: if(sc.isFailure()) {
16: log << MSG::FATAL << " Unable to create ImpactPar tool" << endreq;
17: return sc;
18: }
page 128

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
Chapter 13

Converters

13.1 Overview

Consider a small piece of the LHCb detector; a silicon wafer for example. This “object” will
appear in many contexts: it may be drawn in an event display, it may be traversed by particles
in a Geant4 simulation, its position and orientation may be stored in a database, the layout of
its strips may be queried in an analysis program, etc. All of these uses or views of the silicon
wafer will require code.

How to encompass the need for these different views within Gaudi was one of the key issues
in the design of the framework. In this chapter we outline the design adopted for the
framework and look at how the conversion process works. This is followed by two sections
which deal with the technicalities of writing converters for reading SicB data and for reading
from and writing to ROOT files.

13.2 Persistency converters

Gaudi gives the possibility to read in event data either from Zebra or from ROOT files and to
write data back to disk in ROOT files. This data may then of course be read again at a later
date. Figure 25 is a schematic illustrating how converters fit into the transient-persistent
translation of event data. We will not discuss in detail how the transient data store (e.g. the
event data service) or the persistency service work, but simply look at the flow of data in
order to understand how converters are used.

One of the issues considered when designing the Gaudi framework was the capability for
users to “create their own data types and save objects of those types along with references to
already existing objects”. A related issue was the possibility of having links between objects
which reside in different stores (i.e. files and databases) and even between objects in different
types of store.
 page 129

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
The Gaudi framework gives the possibility to save data objects into ROOT based files. Thus,
since our principal store of data for the moment is still SicB data in Zebra files we see
immediately an application of the issues mentioned above. Figure 25. shows that data may be
read from SicB files and ROOT files into the transient event data store and that data may be
written into ROOT files. It is the job of the persistency service to orchestrate this transfer of
data between memory and disk.

The figure shows two “slave” services: the SicB conversion service and the RIO (ROOT I/O)
service. These services are responsible for managing the conversion of objects between their
transient and persistent representations. Each one has a number of converter objects which
are actually responsible for the conversion itself. As illustrated by the figure a particular
converter object converts between the transient representation and one other form, here either
Zebra or ROOT.

Figure 25 Persistency conversion services in Gaudi

RC

Transient Data Store

Zebra ROOT

SicB
SC
SC
SC

RIO

RC

Persistency service

RC

SC

RC

SicB converter

ROOT converter
page 130

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
13.3 Collaborators in the conversion process

In general the conversion process occurs between the transient representation of an object and
some other representation. In this chapter we will be using persistent forms, but it should be
borne in mind that this could be any other “transient” form such as those required for
visualisation or those which serve as input into other packages (e.g. Geant4).

Figure 26 shows the interfaces (classes with names beginning in I) which must be

Figure 26 The classes (and interfaces) collaborating in the conversion process.

AConversionSvc

Converter

IConverter

createObj()
updateObj()
fillObjRefs()

AConverter1

AConverter2

AConverter3

 IConversionSvc

AOpaqueAddress

IOpaqueAddress

clID()
svcType()
 page 131

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
implemented in order for the conversion process to function. The conversion process is
essentially a collaboration between the following types:

• IConversionSvc

• IConverter

• IOpaqueAddress

For each persistent technology, or “non-transient” representation, a specific conversion
service is required. This is illustrated in the figure by the class AConversionSvc which
implements the IConversionSvc interface.

A given conversion service will have at its disposal a set of converters. These converters are
both type and technology specific. In other words a converter knows how to convert a single
transient type (e.g. MuonHit) into a single persistent type (e.g. RootMuonHit) and vice versa.
Specific converters implement the IConverter interface, possibly by extending an existing
converter base class.

A third collaborator in this process are the opaque address objects. A concrete opaque address
class must implement the IOpaqueAddress interface. This interface allows the address to be
passed around between the transient data service, the persistency service, and the conversion
services without any of them being able to actually decode the address. Opaque address
objects are also technology specific. The internals of a SicBAddress object are different from
those of a RootAddress object.

Only the converters themselves know how to decode an opaque address. In other words only
converters are permitted to invoke those methods of an opaque address object which do not
form a part of the IOpaqueAddress interface.

Converter objects must be “registered” with the conversion service in order to be usable. For
the “standard” converters this will be done automatically. For user defined converters (for
user defined types) this registration must be done at initialisation time (see Chapter 6).

13.4 The conversion process

As an example (see Figure 27) we consider a request from the event data service to the
persistency service for an object to be loaded from a data file.

As we saw previously, the persistency service has one conversion service slave for each
persistent technology in use. The persistency service receives the request in the form of an
opaque address object. In order to decide which conversion service the request should be
passed onto the svcType() method of the IOpaqueAddress interface is invoked. This
returns a “technology identifier” which allows the persistency service to choose a conversion
service.

The request to load an object (or objects) is then passed onto a specific conversion service. This
service then invokes another method of the IOpaqueAddress interface, clID(), in order to
decide which converter will actually perform the conversion. The opaque address is then
passed onto the concrete converter who knows how to decode it and create the appropriate
transient object.
page 132

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
The converter is specific to a specific type, thus it may immediately create an object of that
type with the new operator. The converter must now “unpack” the opaque address, i.e. make
use of accessor methods specific to the address type in order to get the necessary information
from the persistent store.

For example, a SicB converter might get the name of a bank from the address and use that to
locate the required information in the SicB common block. On the other hand a ROOT
converter may extract a file name, the names of a ROOT TTree and an index from the address
and use these to load an object from a ROOT file. The converter would then use the accessor

Figure 27 A trace of the creation of a new transient object.

createObj(OA)

AConversionSvc AOpaqueAddress AConverter DB/File

clID()

createObj(OA)

DataObject

"unpack"

Id

"access(es)"

pointers into
persistent file/DB

data to build
transient object

new

return reference to DataObject

DataObject

setX()

setY()
 page 133

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
methods of this “persistent” object in order to extract the information necessary to build the
transient object.

We can see that the detailed steps performed within a converter depend very much on the
nature of the non-transient data and (to a lesser extent) on the type of the object being built.

If all transient objects were independent, i.e. if there were no references between objects then
the job would be finished. However in general objects in the transient store do contain
references to other objects.

These references can be of two kinds:

• “Macroscopic” references appear as separate “leafs” in the data store. They have to be
registered with a separate opaque address structure in the data directory of the object
being converted . This must be done after the object was registered in the data store in
the method fillObjRefs().

• Internal references must be handled differently. There are two possibilities for
resolving internal references:

• Load on demand: If the object the reference points to should only be loaded
when accessed, the pointer must no longer be a raw C++ pointer, but rather a
smart pointer object containing itself the information for later resolution of
the reference. This is the preferred solution for references to objects within
the same data store, e.g. references from the Monte-Carlo tracks to the
Monte-Carlo vertices. Please see in the corresponding SicB converter
implementations how to construct these smart pointer objects. Late loading
is highly preferable compared to the second possibility.

• Filling of raw C++ pointers: Here things are a little more complicated and
introduces the need for a second step in the process. This is only necessary if
the object points to an object in another store, e.g. the detector data store. To
resolve the reference a converter has to retrieve the other object and set the
raw pointer. These references should be set in the fillObjRefs() method.
This of cousre is more complicated, because it must be ensured that both
objects are present at the time the reference is accessed (i.e. when the pointer
is actually used).

13.5 Converter implementation - general considerations

After covering the ground work in the preceding sections, let us look exactly what needs to be
implemented in a specific converter class. The starting point is the Converter base class
from which a user converter should be derived. For concreteness let us partially develop a
converter for the UDO class of Chapter 6.

The converter shown in Listing 52 is responsible for the conversion of UDO type objects into
objects that may be stored into an Objectivity database and vice-versa. The UDOCnv
constructor calls the Converter base class constructor with two arguments which contain this
information. These are the values CLID_UDO, defined in the UDO class, and
Objectivity_StorageType which is also defined elsewhere. The first two extern
statements simply state that these two identifiers are defined elsewhere.
page 134

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
All of the “book-keeping” can now be done by the Converter base class. It only remains to
fill in the guts of the converter. If objects of type UDO have no links to other objects, then it
suffices to implement the methods createRep() for conversion from the transient form (to
Objectivity in this case) and createObj() for the conversion to the transient form.

If the object contains links to other objects then it is also necessary to implement the methods
fillRepRefs() and fillObjRefs().

13.6 Storing Data using the ROOT I/O Engine

One possibility for storing data is to use the ROOT I/O engine to write ROOT files. Although
ROOT by itself is not an object oriented database, with modest effort a structure can be built
on top to allow the Converters to emulate this behaviour. In particular, the issue of object
linking had to be solved in order to resolve pointers in the transient world.

The concept of ROOT supporting paged tuples called trees and branches is adequate for
storing bulk event data. Trees split into one or several branches containing individual leaves
with data. The data structure within the Gaudi data store is tree like (see Figure 28).

In the transient world Gaudi objects are sub class instances of the “DataObject”. The
DataObject offers some basic functionality like the implicit data directory which allows e.g. to
browse a data store. This tree structure will be mapped to a flat structure in the ROOT file
resulting in a separate tree representing each leaf of the data store. Each data tree contains a
single branch containing objects of the same type. The Gaudi tree is split up into individual
ROOT trees in order to give easy access to individual items represented in the transient model
without the need of loading complete events from the root file i.e. to allow for selective data
retrieval. The feature of ROOT supporting selective data reading using split trees seemed not
to be too attractive since generally complete nodes in the transient store should be made
available in one go.

Listing 52 An example converter class

// Converter for class UDO.
extern const CLID& CLID_UDO;
extern unsigned char OBJY_StorageType;

static CnvFactory<UDOCnv> s_factory;
const ICnvFactory& UDOCnvFactory = s_factory;

class UDOCnv : public Converter {
public:

UDOCnv(ISvcLocator* svcLoc) :
Converter(Objectivity_StorageType, CLID_UDO, svcLoc) { }

createRep(DataObject* pO, IOpaqueAddress*& a);
createObj(IOpaqueAddress* pa, DataObject*& pO);

fillObjRefs(...);
fillRepRefs(...);

}

 page 135

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
However, ROOT expects “ROOT” objects, they must inherit from TObject. Therefore the
objects from the transient store have to be converted to objects understandable by ROOT.

The following sections are an introduction to the machinery provided by the Gaudi
framework to achieve the migration of transient objects to persistent objects. The ROOT
specific aspects are not discussed here; the documentation of the ROOT I/O engine can be
found at the ROOT web site http://root.cern.ch). Note that Gaudi only uses the I/O engine, not
all ROOT classes are available.

Within Gaudi the ROOT I/O engine is implemented in the DbCnv package.

13.7 The Conversion from Transient Objects to ROOT Objects

As for any conversion of data from one representation to another within the Gaudi
framework, conversion to/from ROOT objects is based on Converters. The support of a
“generic” Converter accesses pre-defined entry points in each object. The transient object
converts itself to an abstract byte stream.

However, for specialized objects specific converters can be built by virtual overrides of the
base class.

Whenever objects must change their representation within Gaudi, data converters are
involved. For the ROOT case the converters must have some knowledge of ROOT internals
and the service finally used to migrate ROOT objects (->TObject) to a file. In the same way
the converter must be able to translate the functionality of the DataObject component

Figure 28 The Transient data store and its mapping in the Root file. Note that the “/” used within the data
store to identify separate layers are converted to “#” since the “/” within ROOT denominates directory entries

Map of data store items
to ROOT tree names
#Event
#Event#MC
#Event#MC#MCECalFacePlaneHits
#Event#MC#MCECalHits
……
page 136

http://root.cern.ch

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
to/from the Root storage. Within ROOT itself the object is stored as a Binary Large Object
(BLOB).

The instantiation of the appropriate converter is done by a macro. The macro instantiates also
the converter factory used to instantiate the requested converter. Hence, all other user code is
shielded from the implementation and definitions of the ROOT specific code.

The macro needs a few words of explanation: the instantiated converters are able to create
transient objects of type Event. The corresponding persistent type is of a generic type, the
data are stored as a machine independent byte stream. It is mandatory that the Event class
implements a streamer method “serialize”. An example of the Event class is shown in
Listing 54.

The instantiated converter is of the type DbGenericConverter and the instance of the
instantiating factory has the instance name DbEventCnvFactory..

13.7.1 Non Identifiable Objects

Non identifiable objects cannot directly be retrieved/stored from the data store. Usually they
are small and in any case they are contained by a container object. Examples are particles
(class MCParticle), hits (class MCHitBase and others) or vertices (class MCVertex). These
classes can be converted using a generic container converter. Container converters exist
currently for lists and vectors. The containers rely on the serialize mothods of the contained

Listing 53 Implementing a “generic” converter for the transient class Event.

1: // Include files
2: #include "LHCbEvent/TopLevel/ObjectVector.h"
3: #include "LHCbEvent/TopLevel/ObjectList.h"
4: #include "DbCnv/DbGenericConverter.h"
5: // Converter implementation for objects of class Event
6: #include "LHCbEvent/TopLevel/Event.h"
7: _ImplementConverter(Event)

Listing 54 Serialisation of the class Event.

1: /// Serialize the object for writing
2: virtual StreamBuffer& serialize(StreamBuffer& s) const {
3: DataObject::serialize(s);
4: return s
5: << m_event
6: << m_run
7: << m_time;
8: }
9: /// Serialize the object for reading

10: virtual StreamBuffer& serialize(StreamBuffer& s) {
11: DataObject::serialize(s);
12: return s
13: >> m_event
14: >> m_run
15: >> m_time;
16: }
 page 137

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
objects. The serialisation is able to understand smart references to other objects within the
same data store: e.g. the reference from the MCParticle to the MCVertex. Listing 55 shows
an example of the serialize methods of the MCParticle class

Please refer to the Gaudi example Rio.Example1 for further details how to store objects in
ROOT files.

13.8 Storing Data using other I/O Engines

Once objects are stored as BLOBs, it is possible to adopt any storage technology supporting
this datatype. This is the case not only for ROOT, but also for

• Objectivity/DB

• most relational databases, which support an ODBC interface like

• Microsoft Access,

• Microsoft SQL Server,

• MySQL,

• ORACLE and others.

Listing 55 Serialisation of the class Event..

1: /// Serialize the object for writing
2: inline StreamBuffer& MCParticle::serialize(StreamBuffer& s) const {
3: ContainedObject::serialize(s);
4: unsigned char u = (m_oscillationFlag) ? 1 : 0;
5: return s
6: << m_fourMomentum
7: << m_particleID
8: << m_flavourHistory
9: << u

10: << m_originMCVertex(this) // Stream a reference to another object
11: << m_decayMCVertices(this); // Stream a vector of references
12: }
13:
14:
15: /// Serialize the object for reading
16: inline StreamBuffer& MCParticle::serialize(StreamBuffer& s) {
17: ContainedObject::serialize(s);
18: unsigned char u;
19: s >> m_fourMomentum
20: >> m_particleID
21: >> m_flavourHistory
22: >> u
23: >> m_originMCVertex(this) // Stream a reference to another object
24: >> m_decayMCVertices(this); // Stream a vector of references
25: m_oscillationFlag = (u) ? true : false;
26: return s;
27: }
page 138

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
Note that although storing objects using these technologies is possible, there is currently no
experiment wide policy on how to use Objectivity or other client server based technologies.
For this reason only the example to store data using Microsoft Access is described in the
example Rio.Example1. All other technologies are currenly not supported. If you desperately
want to use SQL Server, MySQL or Objectivity, please contact Markus Frank
(Markus.Frank@cern.ch).
 page 139

GAUDI User Guide
Chapter 13 Converters Version/Issue: 5/1
page 140

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
Chapter 14

Accessing SICB facilities

14.1 Overview

In order to facilitate the transition towards C++ based code we have implemented a number
of features into the Gaudi framework whose purpose is to allow access to facilities existing
within SICB but not yet existing within the framework itself. Gaudi also can read data
produced with SICBMC or SICBDST.

In this chapter we cover: staging data from DSTs, converting SICB data for use by Gaudi
algorithms, accessing the magnetic field map, accessing the SICB geometry description and
the use of the SUINIT, SUANAL and SULAST routines from within the Gaudi framework.

When using the geometry and magnetic field descriptions described here, you should not
forget that they are a temporary solution and that they will disappear at some point in the
future. Gaudi includes already the machinery to provide any algorithm with the detector data
stored in XML format. Investing some time now to describe your detector in XML may be, in
many cases, more convenient than using the old SICB routines to access detector description
data. If, for any reason, you have to use the old tools, use them only to populate some
pre-defined class which can then be used in your algorithms. In this way, when you decide to
move to the new detector description tools in Gaudi, the required changes in your code will
be confined to the parts which access the geometry.

14.2 Reading tapes

Important Note: Accessing tapes and the following instructions may only work in the CERN
installation. Due to a problem with the RFIO software needed to access data on the shift
staging disk pools, only the first method of the methods described below works on NT.

There are three ways to specify an input event data file in Gaudi:
 page 141

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
1. Read one or more files on disk by setting the appropriate option of the application
manager in the job options file:

2. Specify a data set by giving the job identification numbers in the book-keeping data
base, as was done in SICB. The framework will query the ORACLE database in order
to find the corresponding tape and then stage it in. The access to the database is
through the oraweb01 web server at CERN, as for the mcstagein script.

The job IDs are specified in the job options file as follows:

3. Read one or more tape files, even if they are not in the LHCb production
book-keeping database, for example test beam data. The user should tell the Event
Selector which tape(s) and file(s) to read in the following way:

The format is <Volume serial number of the tape>-<File sequence number>

When a Gaudi job requires to stage more than one tape the programs waits for the first tape to
be staged. The rest of the required tapes are staged while the first file is processed. One the
program ends reading the first file it will check if the next file is ready before continuing. It the
tape is not staged yet the program writes a message and waits until the file is in the staging
disk pools.

Skipping events When reading SICB data, one may wish to skip some events. This can be
done by setting the property EventSelector.FirstEvent. For eaxmple, to start
processing event 109, add the following job option::

The algorithms will run only after reading that event. Note that Gaudi will take few seconds
to reach the requested event as it has to read all the records in the Zebra file before the one
requested.

ApplicationMgr.EvtSel = "FILE
$AFSROOT\cern.ch\lhcb\data\mc\sicb_bpipi_v233_100ev.dst1,
$AFSROOT\cern.ch\lhcb\data\mc\\sicb_mbias_v233_10ev.dst2";

ApplicationMgr.EvtSel = "JOBID 11758, 11759";

ApplicationMgr.EvtSel = "TAPE Y21221-7, Y21223-24";

EventSelector.FirstEvent = 109;
page 142

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
14.3 Populating the GAUDI transient data store: SICB Converters

14.3.1 General considerations

Access to the SICB data sets is basically via wrappers to the Fortran code. A complete event is
read into the Zebra common block, and then the conversion to transient objects is done on
request by specialised converters.

As mentioned in Chapter 13, a converter must implement the IConverter interface, by
deriving from a specific base class. In this way any actions which are in common to all
converters of a specific technology may be implemented in a single place.

In the following section we give detailed instructions on how to implement converters within
the SicbCnv package. These are intended primarily for Gaudi developers themselves.

14.3.2 Implementing converters in the SicbCnv package

SICB converters are available currently only for reading, writing back into persistent storage
(ZEBRA files) is not possible at present. Typically GAUDI DataObjects can be of two types:

• Simple classes, which contain the data of a single SICB bank. These classes are of type
DataObject. An example is the Event class containing the data of the PASS bank.

• Container classes, which contain data from multiple SICB banks. An example is the
ObjectVector<MCParticle>, which contains Monte-Carlo particles with data
from the ATMC bank.

For both types of converters template files exist, which should ease the creation of user
converters:

• SicbCnv.Class.Template.cpp and SicbCnv.Class.Template.h to be used
when writing a converter for a single class.

• SicbCnv.Class.Container.cpp and SicbCnv.Container.Template.h to be
used when writing a container of an object container.

The template files are located in the $LHCBSOFTSicbCnv/<version>/doc directory. If you
intend to write your own SICB converter, use the templates and follow the following
instructions:

• Copy SicbCnv.xxxx.Template.h to Sicb<your-class>Cnv.h, where
<your-class> is the name of your persistent class.

• Copy SicbCnv.xxxx.Template.cpp to Sicb<your-class>Cnv.cpp

• Now customize the header and the implementation file

• Follow TODO instructions in Sicb<your-class>Cnv.h

• Follow TODO instructions in Sicb<your-class>Cnv.cpp
 page 143

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
• The converter factory must be made known to the system. This in fact depends on the
linking mechanism: If the converter is linked into the executable as an object file, no
action is necessary. However, usually the converter code resides in a shared or
archive library. In this case the library must have an initialisation routine which
creates an artificial reference to the created converter and forces the linker to include
the code in the executable. An example of creating such a reference can be found in
the file
$LHCBSOFTSicbCnv/<version>/SicbCnv/SicbCnvDll/SicbCnv_load.cpp.
The convention for these initialization files is the following: for any other package
replace the string “SicbCnv” with “OtherPackage”.

• Compile link, debug

• Once the converter works, remove unnecessary TODO comments.

14.4 Access to the Magnetic Field

The magnetic field map will be accessible in the future via the transient detector store. For the
time being, as this is not implemented and as access to the magnetic field has been requested,
we have provided a magnetic field service. Again this is effectively just a wrapper which uses
SICB routines to read the information from a .cdf file.

The location of the field.cdf file is provided by the standard.stream file which is read
in by a SICB routine called from Gaudi. This file is in the data base area,
$LHCBDBASE/standard.stream in AFS. For every version the file used in the production
is read in. The location of the standard.stream file will be taken from an environment
variable as per normal SICB operation.

To use the Magnetic field service one should modify the jobOptions.txt file to include the
following:

Any algorithm which requires the use of the service makes a request via the
serviceLocator() method of the Algorithm base class:

The service provides a method:

ApplicationMgr.ExtSvc = { "MagneticFieldSvc"};

IMagneticFieldSvc* pIMF= 0;
serviceLocator()->getService("MagneticFieldSvc",

IID_IMagneticFieldSvc,
reinterpret_cast<IInterface*&>(pIMF));

StatusCode fieldVector(HepPoint3D& Pos, HepVector3D& field)
page 144

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
which gives a magnetic field vector at a given point in space, for example:

The magnetic field service uses a new version of the SICB routine GUFLD. In this new version
the best possible description of the magnet geometry and the field are assumed in order to
eliminate dependencies with other parts of SICB. Technically in SICB this corresponds to:

These two parameters have been fixed to 4 in the production since a few months before the
Technical Proposal: version 111 of SICB. Thus this seems to be a reasonable restriction until the
field map is provided in the detector description database.

For an example of the use of this service see the sub-algorithm readMagField in the
example FieldGeom distributed with the release.

14.5 Accessing the SICB detector geometry from Gaudi

As discussed previously, the detector geometry will be included along with the field map in
the XML detector description database. Currently only a part of the LHCb detector is in the
new datbase. However, the detector geometry used in the production of the data can be
accessed by calling a function in the SicbFortran name space (this function is just a
wrapper for the FORTRAN function of similar name):

nParam should be set to the number of data words required and on return from the function
will contain the number of data words actually copied into the array: data. The first string
contains the name of the sub detector whose geometry is being requested and the second
string is a list of options:

’V’- version;
’G’ - geometry description parameters (default);
’C’ - calculated geometry (not in *.cdf);
’H’ - hit description parameters;
’D’ - digitization parameters;
’R’ - reconstruction parameters;
’F’ - floating point parameters (default);
’I’ - integer parameters;
’N’ - take parameters from the *.cdf file

HepPoint3D P(10.*cm, 10.*cm, 120.*cm);
HepVector3D B;
pIMF->fieldVector(P, B);

IMAGLEV = IUVERS(’GEOM’,’MAGN’) = 4
IFLDLEV = IUVERS(’GEOM’,’MFLD’) = 4

void SicbFortran::utdget(const std::string& a1, const std::string& a2,
int& nParam, int* data);
 page 145

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
’L’ - ZEBRA pointer to the beginning of the parameters storage is returned in
IARRAY(1)

An algorithm requiring this access should include the header file:

and call it so:

Note that the data returned by the function is written into an integer array. However we can
also read floating point numbers as in the code fragment above by casting a float array.

One should notice that the geometry returned by this function is that which was used in the
production of the data and not that which is in the current version of the .cdf files. Only if
the option ’N’ is specified are the .cdf files read in from the standard location. In order to be
able to use the array of parameters returned one has to know in advance the organization of
these data in the cdf file since the data are stored in an array and not in a common block with
named variables.

The sub-algorithm readTRackerGeom in the example FieldGeom extracts and writes out
some digitization and geometry parameters of the outer tracker.

14.6 Using fortran code in Gaudi

Existing FORTRAN code can be used within a Gaudi application by using the
FortranAlgorithm class.This is a standard Gaudi algorithm which calls the FORTRAN
routines: SUINIT in the initialize() method, SUANAL in the execute() method for each
event, and SULAST in finalize(). Implementing these three routines allows you to write
code in FORTRAN and have it called from within Gaudi, in particular to import routines
already written in SICB.

Note, however that there are some points that should be kept in mind when importing SICB
code into Gaudi. The following list is far from being complete but we hope that it will help
anyone using the FortranAlgorithm. It may be updated in the future with the user’s
experiences and our own findings.

• Gaudi is linked with only two sub-packages of SICB: Finclude and Futio. This
means that taking some code from SICB and running it successfully in Gaudi will not
always be straight forward. Every case will have to be studied separately. In some
cases you may find that the effort required to make the code compatible with Gaudi

#include "SicbCnv/TopLevel/SicbFortran.h"

float rpar[300];

SicbFortran::utdget("WDRF","D",mpar, (int *) rpar);
log << MSG::INFO << " wdpar(" << j << ") = " << vf[j] << endreq;
page 146

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
is comparable to writing it directly in C++. For some pieces of code the integration
into Gaudi may be very simple. The difficulties will come mainly from dependencies
of the code you want to include on other parts of SICB. For instance there may be
common blocks which your code needs but which are never initialized.

• As most of SICB is not executed, you will have either to include and execute the
required initialization or to try to eliminate those dependencies.

• Gaudi uses SICB to access the data in the DST’s, to extract the information from the
banks and to convert the data into the appropriate classes. This needs some
initialization but not every SICB initialization step is followed. The standard.stream
file and setup.cdf are read in from the standard locations. The program will have
access to the data in the cdf files which were used to produce the DST.

• Sicb.dat is not read in. If you need to change the running conditions of your program
do it using the jobOptions.txt file or write your own cards file and read it in SUINIT.

• In Finclude you will find all the NAME_BANK.INC and NAME_FUNC.INC
include files. This means that you have access to the bank data with the usual utilities
provided by SICB. For example, to access the momentum of the reconstructed track
one can use (as in SICB):

• Futio includes most of the UT* and UB routines which can therefore be used by
fortran code within Gaudi.

• Initialize the histogram files yourself in SUINIT. Gaudi initializes the histogram
service but this can be accessed only from C++ code.

14.7 Handling pile up in Gaudi.

In this section we explain the pile-up structure implemented in the Gaudi framework.

Pile-up in Gaudi is performed by a pile-up algorithm. An example (PileUpAlg) can be found
in the package SicbCnv. The pile-up algorithm creates a second instance of the event selector
which has to be configured in the job options file. The leading event will be read in from the
EventSelector created by the ApplicationMgr. The piled-up events are read in from the second
instance created by the pile-up algorithm. There are two different iterators, one for each
EventSelector instance, which loop over these two data streams.

When reading the ZEBRA files produced by SICB the events are merged at the level of the
ZEBRA common blocks by a call to the Futio routine REMERGE. Every C++ algorithm
requesting data from one of the converted banks will get the merged data. Every FORTRAN
algorithm using the SICB banks will also read the merged data as SICBDST does.

PileUpAlg must be the first algorithm called, other algorithms will access the merged events
when they retrieve some data from the store. The pile-up algorithm controls the number of
events which have to be piled-up to every leading event. PileUpAlg uses a C++ version of
the SICB routine RELUMI to get the number of pile-up events as a function of the luminosity
and some other beam parameters. Those parameters are currently read in from the beam.cdf

P = AXTK$P(NOBJ)
 page 147

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
file. The C++ version of RELUMI uses the random number service in Gaudi. Other
implementations of the algorithm, for instance to return a fix number of pile-up events every
time, may be implemented if they are needed.

Figure 29 Pile-up in Gaudi

In the future, when data are not stored in ZEBRA files but in some other data base, both event
selectors will use two different data services to access different data stores. There could be
several different pile-up algorithms and they will use a pile-up service which will be provided
in the framework. The pile-up service will include all the common functionalities needed by
the different pile-up algorithms. The current implementation is very dependent on SICB and
does not use any pile-up service

The pile-up algorithm is responsible to manipulate the data from one or more data sources. It
could, for example, modify the time of flight, to handle spill-over, or to include a label in one
of the event data to know from which pile-up members they come.

The following job options are necessary to instantiate the current implementation of the
pile-up structure. First, tell the ApplicationMgr to create a second SicbEventSelector,
called PileUpSelector::

The application manager should know that the pile-up algorithm should be run, and the user
has to configure how this algorithm works. That configuration depends on the concrete

ApplicationMgr.ExtSvc = { "SicbEventCnvSvc","SicbEventSelector/EventSelector",
"SicbEventSelector/PileUpSelector" };

$SSOLFDWLRQ0JU

,'DWD0DQDJHU6YF

“EventSetector”

6LFE(YHQW6HOHFWRU

“PileupSetector”

6LFE(YHQW6HOHFWRU

“PileupAlg”

6LFE3LOHXS$OJ

“PileupSvc”

6LFE3LOHXS6YF

“EventDataSvc”

(YHQW'DWD6YF

“PileupDataSvc”

(YHQW'DWD6YF

,'DWD3URYLGHU6YF

,'DWD3URYLGHU6YF

,'DWD0DQDJHU6YF

,(YHQW6HOHFWRU

,(YHQW6HOHFWRU

,3URSHUW\

,3URSHUW\

1RW�QHHGHG�IRU
WKH�6LFE�YHUVLRQ

7KH�$OJRULWKP�DQG
6HUYLFH�DUH�PHUJHG
LQWR�RQH�$OJRULWKP�IRU

WKH�6LEF�YHUVLRQ

ZEBRA

ZEBRA

ReMerge
SICB specific
page 148

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
implementation of the algorithm. As mentioned before, in the current implementation the
only possibility is to extract the number of pile-up events as a function of the luminosity.

Finally the second event selector should be configured as the first one is in a normal job. The
second input data source has to be defined by the PileUpSelector.JobInput property which accepts
JOBID’s, FILE names or TAPEs:

ApplicationMgr.TopAlg = { "PileUpAlg","Alg1",”Alg2”,...};
PileUpAlg.PileUpMode = "LUMI";

PileUpSelector.JobInput = "JOBID 12933";
 page 149

GAUDI User Guide
Chapter 14 Accessing SICB facilities Version/Issue: 5/1
page 150

GAUDI User Guide
Chapter 15 Analysis utilities Version/Issue: 5/1
Chapter 15

Analysis utilities

15.1 Overview

In this chapter we give pointers to some of the third party software libraries that we use
within Gaudi or recommend for use by algorithms implemented in Gaudi.

15.2 LHC++

The LHC++ project aims to replace the CERNLIB software libraries with a suite of OO
software with roughly equivalent functionality. It consists of a number of distinct packages,
both commercial and HEP specific. A complete list of LHC++ libraries (and their
documentation) is maintained on the WWW at http://wwwinfo.cern.ch/asd/lhc++/index.html

The LHCb contact people for matters concerning LHC++ are Pavel Binko and Marco
Cattaneo. You can also obtain help (and report problems) directly from the LHC++ team,
preferably via their problem tracking system:
http://gnats.cern.ch/cgi-bin/wwwgnats.pl/LHCXX/1/1/

The following sections introduce some LHC++ components that are used (or can be used) in
Gaudi.

15.3 CLHEP

CLHEP (“Class Library for High Energy Physics”) is a set of HEP-specific foundation and
utility classes such as random generators, physics vectors, geometry and linear algebra. It is
structured in a set of packages independent of any external package. The documentation for
CLHEP can be found on WWW at http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html
 page 151

http://wwwinfo.cern.ch/asd/lhc++/index.html
http://gnats.cern.ch/cgi-bin/wwwgnats.pl/LHCXX/1/1/
http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html

GAUDI User Guide
Chapter 15 Analysis utilities Version/Issue: 5/1
CLHEP is used extensively inside Gaudi, in particular in the LHCbEvent and SicbCnv
packages.

15.4 NAG C

The NAG C library is a commercial mathematical library providing a similar functionality to
the FORTRAN mathlib (part of CERNLIB). It is organised into chapters, each chapter devoted
to a branch of numerical or statistical computation. A full list of the functions is available at
http://wwwinfo.cern.ch/asd/lhc++/Nag_C/html/doc.html

NAG C is not explicitly used in the Gaudi framework, but developers are encouraged to use it
for mathematical computations. Instructions for linking NAG C with Gaudi can be found at
http://lhcb.cern.ch/~cattanem/LHCb/nagC.html

Some NAG C functions print error messages to stdout by default, without any information
about the calling algorithm and without filtering on severity level. A facility is provided by
Gaudi to redirect these messages to the Gaudi MessageSvc. This is documented at
http://lhcb.cern.ch/~cattanem/LHCb/Gaudi/GaudiNagC.html
page 152

http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html
http://wwwinfo.cern.ch/asd/lhc++/Nag_C/html/doc.html
http://lhcb.cern.ch/~cattanem/LHCb/nagC.html
http://lhcb.cern.ch/~cattanem/LHCb/Gaudi/GaudiNagC.html

GAUDI User Guide
Chapter 16 Visualization Facilities Version/Issue: 5/1
Chapter 16

Visualization Facilities

16.1 Overview

In this chapter we describe how visualization facilities are provided to the applications based
on the Gaudi framework. We present how we interface the physics event data objects, detector
components or statistical objects to their graphical representation. One example of an
application that uses the visualization services is an event display program. With this
program we display graphically the event data from files or being acquired by the data
acquisition. Another example could be an interactive analysis program that combines in the
same application histogramming or manipulation of statistical entities, event display, and full
interactive control by the end user of the data objects and algorithms of the application.

In the current release, these visualization services are at the level of a prototype. We have
implemented the mechanism of converting event and detector objects into their graphical
representation and built one example application. This application can serve as a proof of
concept and can also be used to help in the development of physics algorithms (e.g. pattern
recognition) or in the verification of the detector geometry.

16.1.1 The data visualization model

The Gaudi architecture envisaged implementing data visualization using a similar pattern to
data persistency. We do not want to implement visualization methods in each data object. In
other words, we do not want to tell an object to “draw” itself. Instead we would implement
converters as separate entities that are able to create specific graphical representations for each
type of data object and for each graphical package that we would like to use. In that way, as
for the persistency case, we decouple the definition and behaviour of the data objects from the
various technologies for graphics. We could configure at run time to have 2D or 3D graphics
depending on the needs of the end-user at that moment.

Figure 30 illustrates the components that need to be included in an application to make it
capable of visualizing data objects. The interactive user interface is a Service which allows the
 page 153

GAUDI User Guide
Chapter 16 Visualization Facilities Version/Issue: 5/1
end-user to interact with all the components of the application. The user could select which
objects to display, which algorithms to run, what properties of which algorithm to inspect and
modify, etc. This interaction can be implemented using a graphical user interface or by using a
scripting language.

The User interface service is also in charge of managing one or more GUI windows where
views of the graphical representations are going to be displayed.

The other main component is a Conversion Service that handles the conversion of objects into
their graphical representation. This service requires the help of a number of specialized
converters, one for each type of data object that needs to be graphically displayed. The
transient store of graphical representations is shared by the conversion service, together with
the converters, and the user interface component. The form of this transient store depends on
the choice of graphics package. Typically it is the user interface component that would trigger
the conversion service to start the conversion of a number of objects (next event), but this
service can also be triggered by any algorithm that would like to display some objects.

16.2 Using the GaudiLab services

The current implementation of the user interface service is based on the Open Scientist suit of
packages. Some documentation of these packages can be found in
http://www.lal.in2p3.fr/OpenScientist. The following is the list we are using for implementing
the xmLabSvc.

• OpenGL: 3D graphics

• SoFree: a free implementation of Open Inventor which runs on top of OpenGL

• HEPVis: a free collaborative set of classes for HEP over Open Inventor

• Tcl: a scripting language

Figure 30 Components for visualization

��,�$-��

-����-��
7UDQVLHQW

(YHQW�'DWD

-�..���-�..���-�..���-�..���
7UDQVLHQW

'HWHFWRU�'DWD

*UDSKLFDO
6FHQH

,QWHUDFWLYH

8VHU�,QWHUIDFH
page 154

http://www.lal.in2p3.fr/OpenScientist

GAUDI User Guide
Chapter 16 Visualization Facilities Version/Issue: 5/1
• Lab: a package tieding all the others together to present a coherent environment

The Lab package proposes various graphical user interface to handle an interactive session.
Under UNIX we use xmSession that is a direct Motif user interface. On NT it is planned to use
the native windowing system, the win32Session (not yet available in the current release).

16.2.1 Interacting with it

3D examiner viewer controls are :

• right mouse button : popup menu.

• right/popup/decorations : enable the Inventor "decorations".

• Click in the "hand" : pass in viewing mode.

• Click in the "eye" : map the scene to the window size.

• Click in the "target" : center the scene over a picked point.

• left + ptr move : permits to rotate the scene.

• left + middle + ptr move : permit to scale the scene.

• ctrl + shift + left + ptr move : permits to scale the scene.

• ctrl + left + ptr move : permits to pane the scene.

• middle + ptr move : permit to pane the scene.

16.2.2 Writing graphic converters

The role of each converter So<xxx>Cnv is to produce an Open Inventor node that represents
the object. The following fragment of code shows how this is done for the geometry of a
detector element.The code has been simplyfied to be more illustrative. The 3D graphical
objects that are created are standard OpenInventor objects (in bold).
 page 155

GAUDI User Guide
Chapter 16 Visualization Facilities Version/Issue: 5/1

Listing 56 Fragment of SoDetectorElementCnv

28: StatusCode SoDetElemCnv::createRep(DataObject* aObject,IOpaqueAddress&*)
29: {
30: DetectorElement* de = dynamic_cast<DetectorElement*>(aObject);
31: ILVolume* lv = de->geometry()->lvolume();
32: SolidBox* box = dynamic_cast<SolidBox*>(lv->solid()->coverTop());
33:
34: SoSeparator* separator = new SoSeparator;
35: SoDrawStyle* drawStyle = new SoDrawStyle;
36: SoMaterial* material = new SoMaterial;
37: separator->addChild(drawStyle);
38: separator->addChild(material);
39: // set drawing styles
40: drawStyle->style.setValue(SoDrawStyle::LINES);
41: drawStyle->linePattern.setValue(0xFFFF);
42: material->diffuseColor.setValue(SbColor(0.,1.,0.));
43:
44: // Code related to the transformation
45: SoTransform* trans = new SoTransform;
46: ...
47: separator->addChild(trans);
48:
49: SoCube* cube = new SoCube();
50: cube->width = box->xHalfLength() * 2;
51: cube->height = box->yHalfLength() * 2;
52: cube->depth = box->zHalfLength() * 2;
53:
54: separator->addChild(cube);
55: m_pSo->addNode(separator);
56: return StatusCode::SUCCESS;
57: }
page 156

GAUDI User Guide
Chapter 17 Design considerations Version/Issue: 5/1
Chapter 17

Design considerations

17.1 Generalities

In this chapter we look at how you might actually go about designing and implementing a
real physics algorithm. It includes points covering various aspects of software development
process and in particular:

• The need for more “thinking before coding” when using an OO language like C++.

• Emphasis on the specification and analysis of an algorithm in mathematical and
natural language, rather than trying to force it into (unnatural?) object orientated
thinking.

• The use of OO in the design phase, i.e. how to map the concepts identified in the
analysis phase into data objects and algorithm objects.

• The identification of classes which are of general use. These could be implemented by
the computing group, thus saving you work!

• The structuring of your code by defining private utility methods within concrete
classes.

When designing and implementing your code we suggest the your priorities should be as
follows: (1) Correctness, (2) Clarity, (3) Efficiency and, very low in the scale, OOness

Tips about specific use of the C++ language can be found in the coding rules document [4] or
specialized literature.

17.2 Designing within the Framework

A physicist designing a real physics algorithm does not start with a white sheet of paper. The
fact that he or she is using a framework imposes some constraints on the possible or allowed
 page 157

http://lhcb.cern.ch/notes/postscript/98notes/98-049.ps

GAUDI User Guide
Chapter 17 Design considerations Version/Issue: 5/1
designs. The framework defines some of the basic components of an application and their
interfaces and therefore it also specifies the places where concrete physics algorithms and
concrete data types will fit in with the rest of the program. The consequences of this are: on
one hand, that the physicists designing the algorithms do not have complete freedom in the
way algorithms may be implemented; but on the other hand, neither do they need worry
about some of the basic functionalities, such as getting end-user options, reporting messages,
accessing event and detector data independently of the underlying storage technology, etc. In
other words, the framework imposes some constraints in terms of interfaces to basic services,
and the interfaces the algorithm itself is implementing towards the rest of the application. The
definition of these interfaces establishes the so called “master walls” of the data processing
application in which the concrete physics code will be deployed. Besides some general
services provided by the framework, this approach also guarantees that later integration will
be possible of many small algorithms into a much larger program, for example the LHCb
reconstruction program. In any case, there is still a lot of room for design creativity when
developing physics code within the framework and this is what we want to illustrate in the
next sections.

To design a physics algorithm within the framework you need to know very clearly what it
should do (the requirements). In particular you need to know the following:

• What is the input data to the algorithm? What is the relationship of these data to
other data (e.g. event or detector data)?

• What new data is going to be produced by the algorithm?

• What’s the purpose of the algorithm and how is it going function? Document this in
terms of mathematical expressions and plain english.1

• What does the algorithm need in terms of configuration parameters?

• How can the algorithm be partitioned (structured) into smaller “algorithm chunks”
that make it easier to develop (design, code, test) and maintain?

• What data is passed between the different chunks? How do they communicate?

• How do these chunks collaborate together to produce the desired final behaviour? Is
there a controlling object? Are they self-organizing? Are they triggered by the
existence of some data?

• How is the execution of the algorithm and its performance monitored (messages,
histograms, etc.)?

• Who takes the responsibility of bootstrapping the various algorithm chunks.

For didactic purposes we would like to illustrate some of these design considerations using a
hypothetical example. Imagine that we would like to design a tracking algorithm for LHCb
based on a Kalman-filter algorithm.

1. Catalan is also acceptable.
page 158

GAUDI User Guide
Chapter 17 Design considerations Version/Issue: 5/1
17.3 Analysis Phase

As mentioned before we need to understand in detail what the algorithm is supposed to do
before we start designing it and of course before we start producing lines of C++ code. One
old technique for that, is to think in terms of data flow diagrams, as illustrated in Figure 31,
where we have tried to decompose the tracking algorithm into various processes or steps.

In the analysis phase we identify the data which is needed as input (event data, geometry
data, configuration parameters, etc.) and the data which is produced as output. We also need
to think about the intermediate data. Perhaps this data may need to be saved in the
persistency store to allow us to run a part of the algorithm without starting always from the
beginning.

We need to understand precisely what each of the steps of the algorithm is supposed to do. In
case a step becomes too complex we need to sub-divide it into several ones. Writing in plain
english and using mathematics whenever possible is extremely useful. The more we
understand about what the algorithm has to do the better we are prepared to implement it.

17.4 Design Phase

We now need to decompose our physics algorithm into one or more Algorithms (as framework
components) and define the way in which they will collaborate. After that we need to specify
the data types which will be needed by the various Algorithms and their relationships. Then,
we need to understand if these new data types will be required to be stored in the persistency
store and how they will map to the existing possibilities given by the object persistency
technology. This is done by designing the appropriate set of Converters. Finally, we need to
identify utility classes which will help to implement the various algorithm chunks.

17.4.1 Defining Algorithms

Most of the steps of the algorithm have been identified in the analysis phase. We need at this
moment to see if those steps can be realized as framework Algorithms. Remember that an
Algorithm from the view point of the framework is basically a quite simple interface (initialize,
execute, finalize) with a few facilities to access the basic services. In the case of our
hypothetical algorithm we could decide to have a “master” Algorithm which will orchestrate
the work of a number of sub-Algorithms. This master Algorithm will be also be in charge of
bootstraping them. Then, we could have an Algorithm in charge of finding the tracking seeds,
plus a set of others, each one associated to a different tracking station in charge of propagating
a proto-track to the next station and deciding whether the proto-track needs to be kept or not.
Finally, we could introduce another Algorithm in charge of producing the final tracks from
the surviving proto-tracks.

It is interesting perhaps in this type of algorithm to distribute parts of the calculations
(extrapolations, etc.) to more sophisticated “hits” than just the unintelligent original ones.
This could be done by instantiating new data types (clever hits) for each event having
 page 159

GAUDI User Guide
Chapter 17 Design considerations Version/Issue: 5/1
Figure 31 Hypothetical decomposition of a tracking algorithm based on a Kalman filter using a Data flow Diagram

find seeds

form / refine
track

segment

pad hits

extrapolate
to next
station

seeds

proto-tracks

select/discard
proto-track

proto-tracks

proto-track

station hits

Event Data store

station hits
produce
tracks

proto-tracks

tracks

Geometry store

geometry

geometry

geometry
page 160

GAUDI User Guide
Chapter 17 Design considerations Version/Issue: 5/1
references to the original hits. For that, it would be required to have another Algorithm whose
role is to prepare these new data objects, see Figure 32.

The master Algorithm (TrackingAlg) is in charge of setting up the other algorithms and
scheduling their execution. It is the only one that has a global view but it does not need to
know the details of how the different parts of the algorithm have been implemented. The
application manager of the framework only interacts with the master algorithm and does not
need to know that in fact the tracking algorithm is implemented by a collaboration of
Algorithms.

17.4.2 Defining Data Objects

The input, output and intermediate data objects need to be specified. Typically, the input and
output are specified in a more general way (algorithm independent) and basically are pure
data objects. This is because they can be used by a range of different algorithms. We could
have various types of tracking algorithm all using the same data as input and producing
similar data as output. On the contrary, the intermediate data types can be designed to be very
algorithm dependent.

The way we have chosen to communicate between the different Algorithms which constitute
our physics algorithm is by using the transient event data store. This allows us to have low
coupling between them, but other ways could be easily envisaged. For instance, we could
implement specific methods in the algorithms and allow other “friend” algorithms to use
them directly.

Concerning the relationships between data objects, it is strongly discouraged to have links
from the input data objects to the newly produced ones (i.e. links from hits to tracks). In the
other direction this should not be a problem (i.e from tracks to constituent hits).

For data types that we would like to save permanently we need to implement a specific
Converter. One converter is required for each type of data and each kind of persistency
technology that we wish to use. This is not the case for the data types that are used as
intermediate data, since this data is completely transient.

17.4.3 Mathematics and other utilities

It is clear that to implement any algorithm we will need the help of a series of utility classes.
Some of these classes are very generic and they can be found in common class libraries. For
example the standard template library. Other utilities will be more high energy physics
specific, especially in cases like fitting, error treatment, etc. We envisage making as much use
of these kinds of utility classes as possible.

Some algorithms or algorithm-parts could be designed in a way that allows them to be reused
in other similar physics algorithms. For example, perhaps fitting or clustering algorithms
could be designed in a generic way such that they can be used in various concrete algorithms.
During design is the moment to identify this kind of re-usable component or to identify
existing ones that could be used instead and adapt the design to make possible their usage.
 page 161

GAUDI User Guide
Chapter 17 Design considerations Version/Issue: 5/1
Figure 32 Object diagram (a) and class diagram (b) showing how the complete example tracking algorithm could be
decomposed into a set of specific algorithms that collaborate to perform the complete task.

TrackingAlg

HitPreprocessor

Hit

HitSet

Hit
Hit

nHitSet

nHit
nHit

nHit

SeedFinder

StationProcessorStationProcessor
StationProcessor

StationProcessor

Tracker

ProtoTrack
Set

PTrack
PTrack

Track
Set

PTrack
PTrack

PTrackPTrack

Event Data Store

Algorithm

TrackingAlg

HitPreprocessor

SeedFinder

StationProcessor

Tracker

HitSet

DataObject

Hit

nHitSet nHit

TackSet Track

ProtoTack
Set

PTrack

HitSet

Station

IAlgorithm
page 162

GAUDI User Guide
Appendix A References Version/Issue: 5/1
Appendix A

References

1 GAUDI - Architecture Design Report [LHCb 98-064 COMP]

2 GAUDI online code documentation
(http://lhcb.cern.ch/LHCbSoft/RefManual/v3/LHCbSoft.html)

3 GAUDI - User Requirements Document [LHCb 98-065 COMP]

4 LHCb coding conventions [LHCb 98-049 COMP]
 page 163

http://lhcb.cern.ch/computing/offline/pdf/gaudiscenarios.pdf
http://lhcb.cern.ch/notes/postscript/98notes/98-049.ps
http://lhcb.cern.ch/computing/offline/pdf/add.pdf
http://lhcb.cern.ch/LHCbSoft/RefManual/v3/LHCbSoft.html

GAUDI User Guide
Appendix A References Version/Issue: 5/1
page 164

GAUDI User Guide
Appendix B Options for standard components Version/Issue: 5/1
Appendix B

Options for standard components

The following is a list of options that may be set for the standard components: e.g. data files
for input, print-out level for the message service, etc. The options are listed in tabular form for
each component along with the default value and a short explanation. The component name
is given in the table caption thus: [ComponentName].

Table B.1 Standard Options for the Application manager [ApplicationMgr]

Option name Default value Meaning

EvtSel “FILE S:/datafile.dat”; Input event data. Format:
“FILE <filename1>[,<filename2>,...]”;
“JOBID <id1>[, <id2>,...]”
“TAPE <vsn1-file1>[, <vsn2-file2>,...]"
"NONE" (if no event input)

EvtMaxa -1; Maximum number of events to process.

TopAlg List of top level algorithms. Format:
{<Type>/<Name>[, <Type2>/<Name2>,...]};

ExtSvc List of external services names (not known to the Applica-
tionMgr). Format:
{<Type>/<Name>[, <Type2>/<Name2>,...]};

OutStream Declares an output stream object for writing data to a per-
sistent store, e.g. {“DstWriter”};
See also Table B.6

Dlls Search list of DLLs for dynamic loading (NT only). Format:
{<dll1>[,<dll2>,...]};

DetStorageType 0; Detector database storage type
7=XML

DetDbLocation “empty”; Detector database location (filename,URL)

DetDbRootName "empty"; Name of the root node of the detector transient store
 page 165

GAUDI User Guide
Appendix B Options for standard components Version/Issue: 5/1

The last two options define the source of the job options file and so they cannot be defined in the job
options file itself. There are two possibilities to set these options, the first one is using a environment
variable called JOBOPTPATH or setting the option to the application manager directly from the main
programb. The coded option takes precedence.

JobOptionsType “FILE”; Type of file (FILE implies ascii)

JobOptionsPath “jobOptions.txt”; Path for job options source

a. This option is obsolete and is only for backward compatibility. Use [EventSelector].EvtMax instead

b. The setting of properties from the main program is discussed in chapter 4.

Table B.2 Standard Options for the message service [MessageSvc]

Option name Default value Meaning

OutputLevel 0; Verboseness threshold level:
0=NIL,1=VERBOSE, 2=DEBUG, 3=INFO,
4=WARNING, 5=ERROR, 6=FATAL

Format “% F%18W%S%7W%R%T %0W%M”; Format string.

Table B.3 Standard Options for all algorithms [<myAlgorithm>]

Any algorithm derived from the Algorithm base class can override the global Algorithm options thus:

Option name
Default
value Meaning

OutputLevel 0; Message Service Verboseness threshold level:
0=NIL,1=VERBOSE, 2=DEBUG, 3=INFO,4=WARNING, 5=ERROR, 6=FATAL

Enable true If false, application manager skips execution of this algorithm

ErrorMax 1 Job stops when this number of errors is reached

ErrorCount 0 Current error count

ProfileInitialize false; Enable/Disable profiling of Algorithm initialisation

ProfileExecute true; Enable/Disable profiling of Algorithm execution

ProfileFinalize false; Enable/Disable profiling of Algorithm finalisation

Table B.1 Standard Options for the Application manager [ApplicationMgr]

Option name Default value Meaning
page 166

GAUDI User Guide
Appendix B Options for standard components Version/Issue: 5/1
Table B.4 Standard Options for all services [<myService>]

Any service derived from the Service base class can override the global MessageSvc.OutputLevel thus:

Option
name

Default
value Meaning

OutputLevel 0; Message Service Verboseness threshold level:
0=NIL,1=VERBOSE, 2=DEBUG, 3=INFO,4=WARNING, 5=ERROR, 6=FATAL

Table B.5 Standard Options for all Tools [<myTool>]

Any tool derived from the AlgTool base class can override the global MessageSvc.OutputLevel thus:

Option
name

Default
value Meaning

OutputLevel 0; Message Service Verboseness threshold level:
0=NIL,1=VERBOSE, 2=DEBUG, 3=INFO,4=WARNING, 5=ERROR, 6=FATAL

Table B.6 Options available for output streams (e.g. DstWriter)

Output stream objects are used for writing user created data into data files or databases. They are cre-
ated and named by setting the option ApplicationMgr.OutStream. For each output stream the
following options are available

Option name Default value Meaning

ItemList The list of data objects to be written to this stream, e.g.
{“/Event#1”,”Event/MyTracks/#1”};

EvtDataSvc “EventDataSvc”; The service from which to retrieve objects.

EvtConversionSvc “EventConversionSvc”; Conversion service to be used.

OutputFile “”; Output file name

Table B.7 Standard Options for the event persistency service [PersistencySvc]

Option name Default value Meaning

CnvServices {““}; Sets up the event persistency service. Possible values are:
{“RootEventCnvSvc”};
{“SicbEventCnvSvc”}; or both together

Table B.8 Standard Options for the histogram service [HistogramPersistencySvc]

Option name Default value Meaning

OutputFile Output file for histograms. No output if not defined
 page 167

GAUDI User Guide
Appendix B Options for standard components Version/Issue: 5/1
Table B.9 Standard Options for the N-tuple service [NTupleSvc]

Option name Default value Meaning

Input {“”}; Input file(s) for n-tuples. Format:
{“<RZ directory1>#<filename1>”
[,“<RZ directory2>#<filename2>”,...]}

Output {“”}; Output file for n-tuples. Format:
{“<RZ directory1>#<filename1>”
[,“<RZ directory2>#<filename2>”,...]}

Type 6; Storage type. 6=HBOOK

Table B.10 Standard Options for the Sicb event selector [EventSelector]

Option name Default value Meaning

TapesDatabasea

a. This option is obsolete, it is provided only for backwards compatibility and will be removed in a future
release. Since release 5, the framework accesses the ORACLE book-keeping database via the
oraweb01.cern.ch web server.

{“$LHCBHOME/mcdbase/mcmain.db”,
“$LHCBHOME/mcdbase/mcupdate.db”};

Tapes database file location

FirstEvent 1; First event to process (allows skipping of
preceding events)

EvtMax -1; Maximum number of events to process

PrintFreq 10; Frequency with which event number is
reported

JobInput ““; String of input files (same format as
ApplicationMgr.EvtSel), used only for
pileup event selector(s)

Table B.11 Standard Options for Sicb Pileup Algorithm [PileUpAlg]

Option name Default value Meaning

PileUpMode ““; Pileup mode. Only “LUMI”; is implemented

Table B.12 Standard Options for Particle Properties Service [ParticlePropertiesSvc]

Option name Default value Meaning

ParticlePropertiesFile “($LHCBDBASE)/cdf/particle.cdf”; Particle properties database location
page 168

GAUDI User Guide
Appendix B Options for standard components Version/Issue: 5/1
Table B.13 Standard Options for Random Numbers Generator Service [RndmGenSvc]

Option name Default value Meaning

Engine “HepRndm::Engine<RanluxEngine>”; Random number generator engine

Seeds Table of generator seeds

Column 0; Number of columns in seed table -1

Row 1; Number of rows in seed table -1

Luxury 3; Luxury value for the generator

UseTable false; Switch to use seeds table

Table B.14 Standard Options for Transport Service [TransportSvc]

Option name Default value Meaning

ChronoStatService “ChronoStatSvc”; Name of the Chrono Service to be used

MagneticFieldService “MagneticFieldSvc”; Name of the Magnetic Field Service to be used

DetectorDataService “DetectorDataSvc”; Name of the Detector Data Service to be used

StandardGeometryTop “/dd/Structure/LHCb”; Location of the top node of the detector geom-
etry in the transient detector data store

Table B.15 Standard Options for Chrono and Stat Service [ChronoStatSvc]

Option name Default value Meaning

ChronoPrintOutTable true; Global switch for profiling printout

PrintUserTime true; Switch to print User Time

PrintSystemTime false; Switch to print System Time

PrintEllapsedTime false Switch to print Elapsed time (Note typo in option name!)

ChronoDestinationCout false; If true, printout goes to cout rather than MessageSvc

ChronoPrintLevel 3; Print level for profiling (values as for MessageSvc)

ChronoTableToBeOrdered true; Switch to order printed table

StatPrintOutTable true; Global switch for statistics printout

StatDestinationCout false; If true, printout goes to cout rather than MessageSvc

StatPrintLevel 3; Print level for profiling (values as for MessageSvc)

StatTableToBeOrdered true; Switch to order printed table
 page 169

GAUDI User Guide
Appendix B Options for standard components Version/Issue: 5/1
Table B.16 Standard Options for XML conversion service [XmlCnvSvc]

Option name Default value Meaning

AllowGenericConversion false; Switch for generic detector element conversiona

a. The XML conversion service allows the possibility to convert user defined detector elements to generic
detector elements. This means that only the generic part of the detector element, and its associated geom-
etry, will be converted but not the user defined detector element data. This feature can be used when the
user defined detector element data are not needed (e.g. visualization) or when the corresponding user
defined XML converters are not available (testing). When this feature is switched ON, the Gaudi appli-
cation will run successfully with an information message saying that this feature is enabled, and will
print out the information about all the detector elements to which this generic conversion is applied. The
limitation of this feature is that after the generic conversion the returned reference points to a Detec-
torElement object and not to the user defined class. This means that SmartDataPtr class can be pa-
rameterized only by DetectorElement class and not by the user defined class.

Table 11 Options of Algorithms in GaudiAlg package

Algorithm name Option Name Default value Meaning

EventCounter Frequency 1; Frequency with which number of events
should be reported

Prescaler PercentPass 100.0; Percentage of events that should be passed

Sequencer Members Names of mambers of the sequence

Sequencer StopOverride false; If true, do not stop sequence if a filter fails
page 170

GAUDI User Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 5/1
Appendix C

Job Options Grammar and Error Codes

C.1 The EBNF grammar of the Job Options files

The syntax of the Job-Options-File is defined through the following EBNF-Grammar.

Job-Options-File =

{Statements} .

Statements =

{Include-Statement} | {Assign-Statement} | {Append-Statement} |

{Platform-Dependency} .

AssertableStatements =

{Include-Statement} | {Assign-Statement} | {Append-Statement} .

AssertionStatement =

’#ifdef’ | ’#ifndef’ .

Platform-Dependency =

AssertionStatement ’WIN32’ <AsertableStatements> [#else <Asserta-

bleStatements>] #endif

Include-Statement =

‘#include’ string .

Assign-Statement =

Identifier ‘.’ Identifier ‘=’ value ‘;’ .

Append-Statement =

Identifier ‘.’ Identifier ‘+=’ value ‘;’ .
 page 171

GAUDI User Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 5/1
Identifier =

letter {letter | digit} .

value =

boolean | integer | double | string | vector .

vector =

‘{’ vectorvalue { ‘,’ vectorvalue } ‘}’ .

vectorvalue =

boolean | integer | double | string .

boolean =

‘true’ | ‘false’ .

integer =

prefix scientificdigit .

double =

(prefix <digit> ‘.’ [scientificdigit]) |

(prefix ‘.’ scientificdigit) .

string =

‘”’ {char} ‘”’ .

scientificdigit =

< digit> [(‘e’ | ‘E’) < digit>] .

digit =

<figure> .

prefix =

[‘+’ | ‘-’] .

figure =

‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’.

char =

any character from the ASCII-Code

letter =

set of all capital- and non-capital letter
page 172

GAUDI User Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 5/1
C.2 Job Options Error Codes and Error Messages

The table below lists the error codes and error messages that the Job Options compiler may
generate, their reason and how to avoid them.

Table 12 Possible Error-Codes

Error-Code Reason How to avoid it

Error #000 Internal compiler
error

- This code normally should
never appear. If this code is
shown there is maybe a prob-
lem with your memory, your
disk-space or the prop-
erty-file is corrupted.

Error #001 Included prop-
erty-file does not exists or can
not be opened

* wrong path in
#include-directive
* wrong file or mistyped
filename
* file is exclusively locked by
another application
* no memory available to open
this file

Please check if any of the
listed reasons occured in your
case.

Warning #001 File already
included by another file

The file was already included
by another file and will not be
included a second time.
The compiler will ignore this
#include-directive and will
continue with the next state-
ment.

Remove the #include-directive

Error #002 syntax error: Object
expected

The compiler expected an
object at the given position.

Maybe you mistyped the
name of the object or the
object contains unknown
characters or does not fit the
given rules.

Error #003 syntax error: Miss-
ing dot between Object and
Propertyname

The compiler expect a dot
between the Object and the
Propertyname.

Check if the dot between the
Object and the Propertyname
is missing.

Error #004 syntax error: Iden-
tifier expected

The compiler expected an
identifier at the given posi-
tion.

Maybe you mistyped the
name of the identifier or the
identifier contains unknown
characters or does not fit the
given rules.

Error #005 syntax error: Miss-
ing operator ’+=’ or ’=’

The compiler expected an
operator between the Proper-
tyname and the value.

Check if there is a valid opera-
tor after the Propertyname.
Note that a blank or tab is not
allowed between ’+=’!
 page 173

GAUDI User Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 5/1
Error #006 String is not termi-
nated by a “

A string (value) was not ter-
minated by a “.

Check if all your strings are
beginning and ending with “.
Note that the position given
by the compiler can be wrong
because the compiler may
thought that following state-
ments are part of the string!

Error #007 syntax error:
#include-statement is not cor-
rect

The next token after the
#include is not a string.

Make sure that after the
#include-directive there is
specified the file to include.
The file must be defined as a
string!

Error #008 syntax error:
#include does not end with a ;

The include-directive was ter-
minated by a ;

Remove the ; after the
#include-directive.

Error #009 syntax error: Val-
ues must be separated with ’,’

One or more values within a
vector were not separated
with a ’,’ or one ore more val-
ues within a vector are
mistyped.

Check if every value in the
vector is separated by a ’,’. If
so the reason for this message
may result in mistyped val-
ues in the vector (maybe there
is a blank or tab between
numbers).

Error #010 syntax error: Vector
must end with ’}’

The closing bracket is missing
or the vector is not terminated
correctly.

Check, if the vector ends with
a ’}’ and if there is no semico-
lon before the ending-bracket.

Error #011 syntax error: State-
ment must end with a ;

The statement is not termi-
nated correctly.

Check if the statement ends
with a semicolon ’;’.

Runtime-Error #012: Cannot
append to object because it
does not exists

The compiler cannot append
the values to the object.prop-
ertyname because the object
does not exist.

Check if the refered object is
defined in one of the included
files, if so check if you writed
the object-name exactly like in
the include-file.

Runtime-Error #013 Cannot
append to object because
Property does not exists

The compiler cannot append
the values to the object.prop-
ertyname because the prop-
erty does not exist.

Check if there was already
something assigned to the ref-
ered property (in the
include-file or in the current
file). If not then modify the
append-statement into a
assign-statement.
If there was already some-
thing assigned, check if the
object-name and the prop-
erty-name are typed correctly.

Table 12 Possible Error-Codes

Error-Code Reason How to avoid it
page 174

GAUDI User Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 5/1
Error #014 Elements in the
vector are not of the same type

One or more elements in the
vector have a different type
than the first element in the
vector. All elements must
have the same type like the
first declarated element.

Check declaration of vector,
check the types and check, if
maybe a value is mistyped.

Error #015 Value(s) expected The compiler didn’t find val-
ues to append or assign

Check the statement if there
exists values and if they are
written correctly.
Maybe this error is a result of
a previous error!

Error #016 Specified prop-
erty-file does not exist or can
not be resolved

The compiler was not able to
include a property-file or
didn’t found the file.
A reason can be that the com-
piler was not able to resolve
an environment-variable
which points to the location of
the property-file.

Check if you are using
enviornment-variables to
resolve the file, if they are
mistyped (wether in the sys-
tem or in the #include-direc-
tive) or not set correctly.

Error #017 #ifdef not followed
by an identifier

The #ifdef-statement is not fol-
lowed by the assertion-identi-
fier (WIN32).

Add WIN32 after the
#ifdef-statement.

Error #018 identifier in #ifdef
/ #ifndef not known

The assertion-identifier used
in the #ifdef- /#ifndef-state-
ment is not known. At the
moment there can only be
used WIN32!

Change identifier to WIN32.

Error #019 #ifdef / #ifndef /
#else / #endif doesn’t end
with a ’;’

A semicolon was found after
the #ifdef- / #ifndef- / #else- /
#endif-statement. These state-
ments don’t end with a semi-
colon.

Remove the semicolon after
the #ifdef / #ifndef / #else /
#endif-statement.

Table 12 Possible Error-Codes

Error-Code Reason How to avoid it
 page 175

GAUDI User Guide
Appendix C Job Options Grammar and Error Codes Version/Issue: 5/1
page 176

GAUDI User Guide
Appendix D LHCb Event Data Model Version/Issue: 5/1
Appendix D

LHCb Event Data Model

In this Appendix we present the UML diagrams relating the Transient Event Data model.

.

 page 177

GAUDI User Guide
Appendix D LHCb Event Data Model Version/Issue: 5/1
Figure D.1 Class diagram of the LHCb top level event classes.

Top Level
LHCb Event
Structures

RecEv ent

RawEv ent

f romMC : bool = f alse
errorStatus : long = 0
highVoltageMask : long = 0

Ana lEv e nt

TriggerPattern

(from Utilities)

1..1

+tri ggerPatt ern

1..1

Classif ication

(from Utilities)

1..1

+classif ication

1..1

Ev entTag

1..1

+triggerPattern

1..1

1..1

+classif ication

1..1

Ev ent

ev ent : long = 0
run : long = 0

1..1

+tag

1..1

1..1

+ev ent

1..1

TimeStamp

(from Utilities)

1..1
+time

1..1

Data Object

(from Kernel)

R un

runTy pe : long = 0
triggerTy pe : long = 0
enabledTriggerMask : long = 0
enabledDetectorMask : long = 0
luminosity : double = 0.
f illNumber : long = 0
generatorTy pe : long = 0

MCEv ent

pileUp : long = 0

Random Nu mb erSeed

(from Utiliti es)

1..1

+randomNumberSeed

1..1

SubMCEv ent

de tec torC ha racte ris t ics : lo ng
prima ry Verte x : Po int3 D
wei gh t : dou bl e

1..*
+subMCEv ent

1..*

1..1
+randomNumberSeed

1..1

ProcessingVersion

(from Utilities)

1..1

+p roc ess ing Vers ion

1..1

DetectorDataObject

(from Util iti es)

Con tainedObject

pa ren t()
se tPare nt()

ObjectContainerBase

ObjectContainerBase()
hasNewerVersion()
hasTheSameVersion()
setParent()

1..1

+processingVers ion

1..1

1..1

+detectorDataObject

1..1

1..1 #parent1..1

TYPE

O bjectVe cto r

Obje ctVector()
begin()
begin()
end()
end()
rbe gin()
rbe gin()
ren d()
ren d()
size ()
ma x_s ize()
empty ()
f ront()
f ront()
back()
back()
push_back()
pop_back()
insert()
era se()
era se()
operator[]()
operator[]()

TYPE

ObjectList

ObjectList()
begin()
begin()
end()
end()
rbegin()
rbegin()
rend()
rend()
s ize()
max_size()
empty ()
f ront()
f ront()
back()
back()
push_back()
pop_back()
insert()
erase()
erase()
operator[]()
operator[]()

TY PE

0..*

+v ector

0..*

0..*

+l ist

0..*

DataObject

(from Kernel)
page 178

GAUDI User Guide
Appendix D LHCb Event Data Model Version/Issue: 5/1
Figure D.2 Class definitions of Monte Carlo event.

M C R ic h P h o t o d e t e c t o rH it

d ire c t io n : V e c t o r3 D
a b s o lu t e M o m e n t u m : d o u b le = 0 .
p a re n t R a d ia t o r : lo n g = 0

M C R ic h R a d ia t o rH it

ex it : P o in t 3 D
ab s ol ut e M om e n tu m : d o ub le = 0.

M o n te C a r lo E v e n t

M C E C a lF a c e P la n e H it

d ire c t io n : V e c t o r3 D
u n s e e n E n e rg y I n C e ll : d o u b le = 0 .

M C Tra c k in g H it

ex it : P o in t 3 D

M C V e r t e x

p o s it io n : P o in t 3 D
t im e O f F lig h t : d o u b le = 0 .

M C H it B a s e

e n t ry : P o in t 3 D
d e p o s it e d E n e rg y : d o u b le = 0 .
t im e O f F lig h t : d o u b le = 0 .

M C P a r t ic le

f o u rM o m e n t u m : L o re n t zV e c t o r
o s c il la t io n F la g : b o o l = f a ls e

v irt u a lM a s s ()

0 . . *
+d a u gh t e rTr a c k

0 . . *

1 . .1
+o ri gi nV e rt ex

1 . .1

1 . .1
+d e c a y V e r t e x

1 . .1

0 ..1

+m ot he rTr ac k

0 ..1

1 . .1

+ t ra ck

1 . .1

P a r t ic le I d

id : lo n g

P a r t ic le I d ()

(fr om U ti l i ties)

1 . .1

+p art i c l eI d

1 . .11 ..1

+ f la v o u rH is t o ry

1 . .1

C o n t a in e d O b je c t

p a re n t ()
s e t P a re n t ()

(fr om T opLeve l)

M C V e lo H it

w a f e rN u m b e r : lo n g = 0
 page 179

GAUDI User Guide
Appendix D LHCb Event Data Model Version/Issue: 5/1
Figure 33 Data model of reconstructed event.

Re cR i ch Ri n gRe cC a l o ri m e te rC l u ste rR e cT ra cki n g S e g m e n t

Re cM u o n S e g m e n tRe cT ra cke rS e g m e n tRe cV e rte xS e g m e n t

Re c Ric hH it Re cCa l o rim e te rCe l l Re cT ra cki n g H i t

R e cV e rte xC l u ste r R e cIn n e rT ra cke rHi t R e c Ou t erT r acke rHi t Re cM u o n Hi t

R econ struc ted Ev ent

Re cCo n sti tu e n tRe cT ra ck

0 .. *

+ co n sti tu e n t

0 .. *

Re c Hi t

0 .. *

+ h i t

0 .. *

Re cV e rte x

Re cP a ti c l e ID

Co n ta i n ed O b j e ct

p a re n t()
se tP a re n t()

(f rom TopLev e l)
page 180

GAUDI User Guide
Appendix D LHCb Event Data Model Version/Issue: 5/1
Figure 34 Data model of analysis event.

Figure 35 Velo event data model.

Analysis Event

ContainedObject

parent()
setParent()

(f rom To pLevel)

TrkParticle NeutParticle CompParticle

DecayTreeChosenParticle

* 1*

+composedOf

1

VtxCandidate

RecPaticleID
(from Reconstructed)

RecTrack
(f ro m Re construc te d)

ParticleCandidate

1

*

1

+originatesFrom
*

*
1

*

+produces

1

11 1
+decaysInto

1

Level1Summary

Velo Event
ContainedObject

parent()
setParent()

(from TopLevel) DataObject
(f rom Kernel)

Level1VertexLevel13dTrack

* 1* 1

Level12dTrack

*

1

*

1

RawVeloHi t VeloCluster

*
1

*
1

*

1

*

1

* 1* 1
 page 181

GAUDI User Guide
Appendix D LHCb Event Data Model Version/Issue: 5/1
Figure 36 Tracking reconstructed event data model.

Figure 37 Event data model for Calorimeters.

OTHitOnTrack

OTHit ITHit

ITHitOnTrack

Espetially in case
of outer tracker
measurement
depends on which
track the hit is on

TrMCTrack

Pointer or
associater

Z-position s tate,
covariance matr ix

TrMeasurem ent

TrState

TrTrack

2..*

0..*

2..*

0..*

1..*

1

1..*

1

TrStateQPt TrStateL

x, y, tx, ty, Q/Pt x, y, tx, ty

Tracking Reconstructed Event

Calorimeters

ContainedObject

parent()
setParent()

(f rom T opLevel)

CaloCellID
CaloDigit

energy : double = 0.
11

MCCaloDigit
MCCaloSummedDeposit

activeE : double = 0.
totalE : double = 0.

MCParticle

fourMomentum : LorentzVector
oscillationFlag : bool = false

virtualMass()

(f rom M onte Carlo)

MCCaloDeposit

activeE : double = 0.
totalE : double = 0.
page 182

GAUDI User Guide
Appendix D LHCb Event Data Model Version/Issue: 5/1
Figure 38 Tracking model of hits.

Tracking Model of Hits

MCHitBase

entry : Point3D
depositedEnergy : double = 0.
timeOf Flight : double = 0.

(from MonteCarlo)

MCParticle

f ourMomentum : LorentzVector
oscillationFlag : bool = f alse

v irtualMass()

(from MonteCarlo)1..1

+track

1..1

D etectionCel l

TrOTLay er

OTDigi

OTDetectionCell

OTHit

(from TrackingTracks)

Also needs to kno
w about true
resolution of drif t
ambiguity

TrITLay er

ITDigi
ITDetectionCell

ITHit

(from TrackingTracks)

OTMCHi tOTMCDigi
ITMCHit

MCTrackingHit

exit : Point 3D

(from MonteCarlo)

ITMCDigi
 page 183

GAUDI User Guide
Appendix D LHCb Event Data Model Version/Issue: 5/1
Figure D.3 Object containers for the event model

ObjectContainerBase

ObjectContainerBase()
hasNewerVersion()
hasTheSameVersion()
setParent()

(from TopLevel)

ContainedObject

parent()
setParent()

(from TopLevel)

1..1

#parent

1..1

T

ObjectVector

ObjectVector()
begin()
begin()
end()
end()
rbegin()
rbegin()
rend()
rend()
size()
max_size()
empty()
front()
front()
back()
back()
push_back()
pop_back()
insert()
erase()
erase()
operator[]()
operator[]()
reserve()
capacity()
release()

(from TopLevel)

T
(from T opLevel)

0..*
+vector

0..*

T

ObjectList

ObjectList()
begin()
begin()
end()
end()
rbegin()
rbegin()
rend()
rend()
size()
max_size()
empty()
front()
front()
back()
back()
push_back()
pop_back()
insert()
erase()
erase()
push_front()
pop_front()
release()

(f rom TopL eve l)

0 ..*
+list

0..*

Object
Containers

DataObject
(from Kernel)
page 184

GAUDI User Guide
 Index Version/Issue: 5/1
Index

Symbols
<nopage>Random Numbers

Service. See Services, 114

A
Algorithm, 12

Base class, 13, 37
Concrete, 37, 40
Constructor, 39, 41
Declaring properties, 39
Execution, 31, 41
Filter, 44
Finalisation, 32, 43
Initialisation, 31, 39, 41
Nested, 43
Path, 44
Setting properties, 39

Algorithms
EventCounter, 45, 99
Prescaler, 45
Sequencer, 44
vs. Services vs. Tools, 45

Application Manager, 14
instantiation, 27

ApplicationMgr. See Application Manager
Architecture, 11

C
Casting

of DataObjects, 49
Checklist

deleting DataObjects, 53
for implementing algorithms, 43

CLHEP
Units, 8

CMTPATH
to get development version of packages, 23

Component, 11
ContainedObject, 51
 page 185

GAUDI User Guide
 Index Version/Issue: 5/1
Conventions, 8
Coding, 9
Naming, 9
Units, 8
used in this this document, 9

Converters, 129
SICB Converters, 143

D
Data Model

LHCb, 47
Data Store, 47

Detector data, 65
Event data, 59
finding objects in, 49, 55
Histograms, 89
registering objects into, 50

DataObject, 13, 47, 49, 50
ownership, 50

E
endreq, MsgStream manipulator, 107
EventCounter algorithm. See Algorithms
Example Application

Main program, 26
Trace of execution, 27

Examples
distributed with Gaudi, 36
HistoAlgorithm, 30
Simple Analysis, 33

Exception
when casting, 49

F
Factory

for a concrete algorithm, 39
Filter. See Algorithm Filter
FORTRAN, 12

G
GEANT4

units, 8

H
Histograms

Naming convention for, 9
page 186

GAUDI User Guide
 Index Version/Issue: 5/1
I
Inheritance, 37
Installation

of the framework, 19
Interface, 11

and multiple inheritance, 15
In C++, 15

Interfaces
IAlgorithm, 15, 37, 39, 41
IAppMgrUI, 27
IDataManager, 14
IDataProviderSvc, 14, 47, 48
IDetectorElement, 66
IGeometryInfo, 66
IHistogramSvc, 14, 47
ILVolume, 69
IMessageSvc, 15
INTupleSvc, 47
INtupleSvc, 14
IParticlePropertySvc, 108
IProperty, 14, 27, 37
IPVolume, 69
ISolid, 69
ISvcLocator, 13, 39, 98
IValidity, 66, 69

L
Linux, 21

M
Magnetic Field. See Services
Message service, 105
MsgStream, 32

O
Object Container, 50

and STL, 51
ObjectList, 51
ObjectVector, 51
Overview, 121

P
Package, 16

Guidelines for sub-detectors, 17
Internal layout, 17
structure of LHCb software, 16

Path. See Algorithm Path
 page 187

GAUDI User Guide
 Index Version/Issue: 5/1
Persistent store
saving data to, 57

Pile-up, 147
Platform, 21

Available platforms, 21
Prescaler algorithm. See Algorithms
Problems

Reporting, 10

R
Random Numbers

generating, 114
Release notes, 19
Reporting problems, 10
Retrieval, 127

S
Saving data, 57
Sequencer algorithm. See Algorithms
Services, 13

Chrono&Stat cervice, 111
Job Options service, 99
Magnetic Field Service, 144
Message Service, 105
Particle Properties Service, 108
Random Numbers Service, 114
requesting and accessing, 97
ToolSvc, 121
vs.Algorithms vs. Tools, 45

SmartDataLocator, 55
SmartDataPtr, 55
SmartRef, 56
StatusCode, 41
Sub-detectors

Software packaging guidelines, 17

T
The, 126
Tools, 121

vs. Algorithms vs. Services, 45
Typedef

to save typing, 53

U
Units, 8

Convention, 8
page 188

GAUDI User Guide
 Index Version/Issue: 5/1
W
Windows NT, 21
 page 189

GAUDI User Guide
 Index Version/Issue: 5/1
page 190

	Document Control Sheet
	Document Status Sheet
	Table of Contents
	Chapter 1 Introduction
	1.1�� Purpose of the document
	1.2�� Conventions
	1.2.1�� Units
	1.2.2�� Coding Conventions
	1.2.3�� Naming Conventions
	1.2.4�� Conventions of this document

	1.3�� Reporting problems
	1.4�� Editor’s note

	Chapter 2 The framework architecture
	2.1�� Overview
	2.2�� Why architecture?
	2.3�� Data versus code
	2.4�� Main components
	2.5�� Package structure
	2.5.1�� Package Layout
	2.5.2�� Packaging Guidelines for sub-detectors

	Chapter 3 Release notes and software installation
	3.1�� Release History
	3.2�� Current Functionality
	3.3�� Availability
	3.4�� Using the framework on NT with Developer Studio
	3.5�� Using the framework in Unix
	3.6�� Working with development releases
	3.6.1�� The development release area
	3.6.2�� Using the development version of packages

	Chapter 4 Getting started
	4.1�� Overview
	4.2�� Creating a job
	4.3�� The main program
	4.4�� Configuring the job
	4.5�� Algorithms
	4.5.1�� The HistoAlgorithm header file
	4.5.2�� The HistoAlgorithm implementation file

	4.6�� Job execution
	4.7�� Simple Physics Analysis Example
	4.8�� Other examples distributed with Gaudi

	Chapter 5 Writing algorithms
	5.1�� Overview
	5.2�� Algorithm base class
	5.3�� Derived algorithm classes
	5.3.1�� Creation (and algorithm factories)
	5.3.2�� Declaring properties
	5.3.3�� Implementing IAlgorithm

	5.4�� Nesting algorithms
	5.5�� Algorithm paths and filters
	5.6�� Algorithms vs. Services vs. Tools

	Chapter 6 Accessing data
	6.1�� Overview
	6.2�� Using the data stores
	6.3�� Using data objects
	6.4�� Object containers
	6.5�� Using object containers
	6.6�� Data access checklist
	6.7�� Defining new data types
	6.8�� The SmartDataPtr/SmartDataLocator utilities
	6.8.1�� Using SmartDataPtr/SmartDataLocator objects

	6.9�� Smart references and Smart reference vectors
	6.10�� Saving data to a persistent store

	Chapter 7 LHCb Event Data Model
	7.1�� Top level event data structures
	7.2�� Monte Carlo event
	7.3�� Raw event
	7.4�� Reconstructed event
	7.5�� Analysis event
	7.6�� Utilities

	Chapter 8 Detector Description
	8.1�� Overview
	8.2�� Detector Description Database
	8.3�� Using the Detector Data transient store
	8.3.1�� Structure of the transient store
	8.3.2�� Accessing detector data on the transient store
	8.3.3�� Using the DetectorElement class

	8.4�� General features of the geometry tree
	8.4.1�� Logical Volumes
	8.4.2�� Physical Volumes
	8.4.3�� Solids

	8.5�� Persistent representation
	8.5.1�� Brief introduction to XML
	8.5.1.1�� XML Basics
	8.5.1.2�� XML components
	8.5.1.3�� Well formed versus Valid XML documents

	8.5.2�� Working with the persistent detector description in XML
	8.5.2.1�� Defining the top level structure
	8.5.2.2�� Defining detector elements
	8.5.2.3�� Defining logical volumes
	8.5.2.4�� Defining material

	8.5.3�� Customizing a detector element
	8.5.4�� CLHEP units
	8.5.5�� Numerical expressions parser

	Chapter 9 Histogram facilities
	9.1�� Overview
	9.2�� The Histogram service.
	9.3�� Using histograms and the histogram service
	9.4�� Persistent storage of histograms.

	Chapter 10 N-tuple facilities
	10.1�� Overview
	10.2�� Access to the N-tuple Service from an Algorithm.
	10.3�� Using the n-tuple service.
	10.3.1�� Defining n-tuple tags
	10.3.2�� Booking and Declaring Tags to the N-tuple
	10.3.3�� Filling the N-tuple
	10.3.4�� N-tuple Persistency

	Chapter 11 Framework services
	11.1�� Overview
	11.2�� Requesting and accessing services
	11.3�� The Job Options Service
	11.3.1�� Algorithm, Tool and Service Properties
	11.3.1.1�� SimpleProperties
	11.3.1.2�� CommandProperty

	11.3.2�� Job options file format
	Assignment statement
	Append Statement
	Including other Job Option Files
	11.3.2.1�� Platform dependent execution
	Examples

	11.4�� The Standard Message Service
	11.4.1�� The MsgStream utility
	User interface

	11.5�� The Particle Properties Service
	11.5.1�� Initialising and Accessing the Service
	11.5.2�� Service Properties
	11.5.3�� Service Interface
	11.5.4�� Examples

	11.6�� The Chrono & Stat service
	11.6.1�� Code profiling
	11.6.2�� Statistical monitoring
	11.6.3�� Chrono and Stat helper classes
	11.6.3.1�� Chrono
	11.6.3.2�� Stat

	11.6.4�� Performance considerations

	11.7�� The Random Numbers Service
	11.8�� Developing new services
	11.8.1�� The Service base class
	11.8.2�� Implementation details

	Chapter 12 Tools and ToolSvc
	12.1�� Overview
	12.2�� Tools
	12.2.1�� “Private” and “Shared” Tools
	12.2.2�� The Tool classes
	12.2.2.1�� The AlgTool base class
	12.2.2.2�� Tools identification
	12.2.2.3�� Concrete tools classes
	12.2.2.4�� Implementation of concrete tools

	12.3�� The ToolSvc
	12.3.1�� Retrieval of tools via the IToolSvc interface

	Chapter 13 Converters
	13.1�� Overview
	13.2�� Persistency converters
	13.3�� Collaborators in the conversion process
	13.4�� The conversion process
	13.5�� Converter implementation - general considerations
	13.6�� Storing Data using the ROOT I/O Engine
	13.7�� The Conversion from Transient Objects to ROOT Objects
	13.7.1�� Non Identifiable Objects

	13.8�� Storing Data using other I/O Engines

	Chapter 14 Accessing SICB facilities
	14.1�� Overview
	14.2�� Reading tapes
	14.3�� Populating the GAUDI transient data store: SICB Converters
	14.3.1�� General considerations
	14.3.2�� Implementing converters in the SicbCnv package

	14.4�� Access to the Magnetic Field
	14.5�� Accessing the SICB detector geometry from Gaudi
	14.6�� Using fortran code in Gaudi
	14.7�� Handling pile up in Gaudi.

	Chapter 15 Analysis utilities
	15.1�� Overview
	15.2�� LHC++
	15.3�� CLHEP
	15.4�� NAG C

	Chapter 16 Visualization Facilities
	16.1�� Overview
	16.1.1�� The data visualization model

	16.2�� Using the GaudiLab services
	16.2.1�� Interacting with it
	16.2.2�� Writing graphic converters

	Chapter 17 Design considerations
	17.1�� Generalities
	17.2�� Designing within the Framework
	17.3�� Analysis Phase
	17.4�� Design Phase
	17.4.1�� Defining Algorithms
	17.4.2�� Defining Data Objects
	17.4.3�� Mathematics and other utilities

	Appendix A References
	Appendix B Options for standard components
	Appendix C Job Options Grammar and Error Codes
	C.1�� The EBNF grammar of the Job Options files
	C.2�� Job Options Error Codes and Error Messages
	Appendix D LHCb Event Data Model
	Index

